8,618 research outputs found

    Protecting a Graph with Mobile Guards

    Full text link
    Mobile guards on the vertices of a graph are used to defend it against attacks on either its vertices or its edges. Various models for this problem have been proposed. In this survey we describe a number of these models with particular attention to the case when the attack sequence is infinitely long and the guards must induce some particular configuration before each attack, such as a dominating set or a vertex cover. Results from the literature concerning the number of guards needed to successfully defend a graph in each of these problems are surveyed.Comment: 29 pages, two figures, surve

    Structural Properties and Constant Factor-Approximation of Strong Distance-r Dominating Sets in Sparse Directed Graphs

    Get PDF
    Bounded expansion and nowhere dense graph classes, introduced by Nesetril and Ossona de Mendez, form a large variety of classes of uniformly sparse graphs which includes the class of planar graphs, actually all classes with excluded minors, and also bounded degree graphs. Since their initial definition it was shown that these graph classes can be defined in many equivalent ways: by generalised colouring numbers, neighbourhood complexity, sparse neighbourhood covers, a game known as the splitter game, and many more. We study the corresponding concepts for directed graphs. We show that the densities of bounded depth directed minors and bounded depth topological minors relate in a similar way as in the undirected case. We provide a characterisation of bounded expansion classes by a directed version of the generalised colouring numbers. As an application we show how to construct sparse directed neighbourhood covers and how to approximate directed distance-r dominating sets on classes of bounded expansion. On the other hand, we show that linear neighbourhood complexity does not characterise directed classes of bounded expansion

    Perpetually Dominating Large Grids

    Get PDF
    In the m-\emph{Eternal Domination} game, a team of guard tokens initially occupies a dominating set on a graph GG. An attacker then picks a vertex without a guard on it and attacks it. The guards defend against the attack: one of them has to move to the attacked vertex, while each remaining one can choose to move to one of his neighboring vertices. The new guards' placement must again be dominating. This attack-defend procedure continues eternally. The guards win if they can eternally maintain a dominating set against any sequence of attacks, otherwise, the attacker wins. The m-\emph{eternal domination number} for a graph GG is the minimum amount of guards such that they win against any attacker strategy in GG (all guards move model). We study rectangular grids and provide the first known general upper bound on the m-eternal domination number for these graphs. Our novel strategy implements a square rotation principle and eternally dominates m×nm \times n grids by using approximately mn5\frac{mn}{5} guards, which is asymptotically optimal even for ordinary domination.Comment: latest full draft versio

    A method for eternally dominating strong grids

    Get PDF
    International audienceIn the eternal domination game, an attacker attacks a vertex at each turn and a team of guards must move a guard to the attacked vertex to defend it. The guards may only move to adjacent vertices and no more than one guard may occupy a vertex. The goal is to determine the eternal domination number of a graph which is the minimum number of guards required to defend the graph against an infinite sequence of attacks. In this paper, we continue the study of the eternal domination game on strong grids. Cartesian grids have been vastly studied with tight bounds for small grids such as 2×n, 3×n, 4×n, and 5×n grids, and recently it was proven in [Lamprou et al., CIAC 2017, 393-404] that the eternal domination number of these grids in general is within O(m + n) of their domination number which lower bounds the eternal domination number. Recently, Finbow et al. proved that the eternal domination number of strong grids is upper bounded by mn 6 + O(m + n). We adapt the techniques of [Lamprou et al., CIAC 2017, 393-404] to prove that the eternal domination number of strong grids is upper bounded by mn 7 + O(m + n). While this does not improve upon a recently announced bound of ⎡m/3⎤ x⎡n/3⎤ + O(m √ n) [Mc Inerney, Nisse, Pérennes, HAL archives, 2018; Mc Inerney, Nisse, Pérennes, CIAC 2019] in the general case, we show that our bound is an improvement in the case where the smaller of the two dimensions is at most 6179

    The Generalised Colouring Numbers on Classes of Bounded Expansion

    Get PDF
    The generalised colouring numbers admr(G)\mathrm{adm}_r(G), colr(G)\mathrm{col}_r(G), and wcolr(G)\mathrm{wcol}_r(G) were introduced by Kierstead and Yang as generalisations of the usual colouring number, also known as the degeneracy of a graph, and have since then found important applications in the theory of bounded expansion and nowhere dense classes of graphs, introduced by Ne\v{s}et\v{r}il and Ossona de Mendez. In this paper, we study the relation of the colouring numbers with two other measures that characterise nowhere dense classes of graphs, namely with uniform quasi-wideness, studied first by Dawar et al. in the context of preservation theorems for first-order logic, and with the splitter game, introduced by Grohe et al. We show that every graph excluding a fixed topological minor admits a universal order, that is, one order witnessing that the colouring numbers are small for every value of rr. Finally, we use our construction of such orders to give a new proof of a result of Eickmeyer and Kawarabayashi, showing that the model-checking problem for successor-invariant first-order formulas is fixed-parameter tractable on classes of graphs with excluded topological minors
    corecore