2,445 research outputs found

    Retrodiction of Data Association Probabilities via Convex Optimization

    Get PDF

    Policy Rollout Action Selection in Continuous Domains for Sensor Path Planning

    Get PDF

    Sensor Path Planning for Emitter Localization

    Get PDF
    The localization of a radio frequency (RF) emitter is relevant in many military and civilian applications. The recent decade has seen a rapid progress in the development of small and mobile unmanned aerial vehicles (UAVs), which offer a way to perform emitter localization autonomously. The path a UAV travels influences the localization significantly, making path planning an important part of a mobile emitter localization system. The topic of this thesis is path planning for a UAV that uses bearing measurements to localize a stationary emitter. Using a directional antenna, the direction towards the target can be determined by the UAV rotating around its own vertical axis. During this rotation the UAV is required to remain at the same position, which induces a trade-off between movement and measurement that influences the optimal trajectories. This thesis derives a novel path planning algorithm for localizing an emitter with a UAV. It improves the current state of the art by providing a localization with defined accuracy in a shorter amount of time compared to other algorithms in simulations. The algorithm uses the policy rollout principle to perform a nonmyopic planning and to incorporate the uncertainty of the estimation process into its decision. The concept of an action selection algorithm for policy rollout is introduced, which allows the use of existing optimization algorithms to effectively search the action space. Multiple action selection algorithms are compared to optimize the speed of the path planning algorithm. Similarly, to reduce computational demand, an adaptive grid-based localizer has been developed. To evaluate the algorithm an experimental system has been built and the algorithm was tested on this system. Based on initial experiments, the path planning algorithm has been modified, including a minimal distance to the emitter and an outlier detection step. The resulting algorithm shows promising results in experimental flights

    A Practical and Conceptual Framework for Learning in Control

    No full text
    We propose a fully Bayesian approach for efficient reinforcement learning (RL) in Markov decision processes with continuous-valued state and action spaces when no expert knowledge is available. Our framework is based on well-established ideas from statistics and machine learning and learns fast since it carefully models, quantifies, and incorporates available knowledge when making decisions. The key ingredient of our framework is a probabilistic model, which is implemented using a Gaussian process (GP), a distribution over functions. In the context of dynamic systems, the GP models the transition function. By considering all plausible transition functions simultaneously, we reduce model bias, a problem that frequently occurs when deterministic models are used. Due to its generality and efficiency, our RL framework can be considered a conceptual and practical approach to learning models and controllers whe

    Experimental Validation of Cognitive Radar Anticipation using Stochastic Control

    Get PDF
    Cognition applied to radar systems is a growing area of research. The majority of cognitive radar research is focused on theory and simulation with little experimental validation. Prior research proposed the application of anticipation within a cognitive radar, demonstrating by simulation that this can provide significant improvements in tracking performance, when compared to non-cognitive radar tracking methods. The approach applied a POMDP algorithm to control the timing of track updates for a target while anticipating the loss of measurements within a known time period/region. This work aims to expand on this concept by using data from a real radar, NetRAD, in order to validate the application of anticipation when tracking a human target
    • …
    corecore