147 research outputs found

    Antenna Modeller for Synthetic Aperture Radar Applications. Electromagnetic and Radiometric Considerations

    Get PDF
    The objective of the present Master Thesis is designing an optimizer of the excitation coefficients of a phased array antenna

    Application of advanced technology to space automation

    Get PDF
    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits

    Investigation of L-band shipboard antennas for maritime satellite applications

    Get PDF
    A basic conceptual investigation of low cost L-band antenna subsystems for shipboard use was conducted by identifying the various pertinent design trade-offs and related performance characteristics peculiar to the civilian maritime application, and by comparing alternate approaches for their simplicity and general suitability. The study was not directed at a single specific proposal, but was intended to be parametric in nature. Antenna system concepts were to be investigated for a range of gain of 3 to 18 dB, with a value of about 10 dB considered as a baseline reference. As the primary source of potential complexity in shipboard antennas, which have beamwidths less than hemispherical as the beam pointing or selecting mechanism, major emphasis was directed at this aspect. Three categories of antenna system concepts were identified: (1) mechanically pointed, single-beam antennas; (2) fixed antennas with switched-beams; and (3) electronically-steered phased arrays. It is recommended that an L-band short backfire antenna subsystem, including a two-axis motor driven gimbal mount, and necessary single channel monopulse tracking receiver portions be developed for demonstration of performance and subsystem simplicity

    Antenna Modeller for Synthetic Aperture Radar Applications. Electromagnetic and Radiometric Considerations

    Get PDF
    The objective of the present Master Thesis is designing an optimizer of the excitation coefficients of a phased array antenna

    The applications of satellites to communications, navigation and surveillance for aircraft operating over the contiguous United States. Volume 1 - Technical report

    Get PDF
    Satellite applications to aircraft communications, navigation, and surveillance over US including synthesized satellite network and aircraft equipment for air traffic contro

    Ground moving target tracking with space-time adaptive radar

    Get PDF
    Ground moving target tracking by airborne radar provides situational awareness of vehicle movements in the supervised region. Vehicles are detected by applying space time adaptive processing to the received multi channel radar data. The detections are then fed to a tracking algorithm that processes them to tracks. In literature, radar signal processing and ground target tracking are treated as two separate topics and results are not validated by experimental data. The first objective of this thesis is to provide a closer link between these fields. The second objective is to show that tracking performance can be improved by providing additional data from the radar signal processing to the tracking step. The third objective is to validate the algorithm and the performance improvement using experimental data. As a result this thesis presents a unified treatment of ground moving target tracking from radar raw data to established tracks. A complete reference algorithm for ground moving target tracking based on the Gaussian mixture probability hypothesis density filter is presented. In particular, Jacobians of the observation process are derived. They are presented in such a form that immediate implementation in a programming language is possible. In the course of this thesis a measurement campaign with the experimental radar PAMIR of Fraunhofer FHR was conducted. The experiment included two GPS equipped reference vehicles and a multitude of targets of opportunity. Tracking results obtained with this experimental data and the reference tracking algorithm of this thesis are shown. The thesis also enhances the reference target tracking algorithm by a parameter that characterizes the variance of the direction of arrival measurement of the target signal. This parameter is determined adaptively depending on the estimated signal strength and the clutter background. The major contribution with regard to this enhancement is a thorough experimental validation: Firstly, a comparison between GPS based measurements and radar based measurements of the direction of arrival shows that this variance captures the distribution of measurement errors excellently. Secondly, tracking results are compared to the GPS tracks of the ground truth vehicles. It is found that the enhanced algorithm yields superior track quality with respect to both track accuracy and track continuity.Bodenzielverfolgung mit luftgestütztem Radar liefert das Lagebild von Fahrzeug­bewegungen innerhalb des beobachteten Gebiets. Fahrzeuge werden durch die Anwendung von Raum-Zeit adaptiver Signalverarbeitung (STAP) entdeckt. Die Entdeckungen werden dann von einem Zielverfolgungsalgorithmus zu Zielspuren verarbeitet. In der Literatur werden Radarsignalverarbeitung und Zielverfolgung als zwei getrennte Forschungsfelder behandelt und die Bodenzielverfolgung wird nicht anhand von Realdaten validiert. Das erste Ziel dieser Arbeit ist, eine engere Verbindung zwischen beiden Feldern herzustellen. Das zweite Ziel ist zu zeigen, dass die Qualität der Zielverfolgung durch das Verwenden zusätzlicher, durch die Radarsignalverarbeitung gewonnene Information verbessert werden kann. Das dritte Ziel ist, die Funktionalität der Zielverfolgung und die Verbesserung der Leistung durch experimentelle Realdaten zu belegen. Somit stellt diese Arbeit eine Gesamtbehandlung der Bodenzielverfolgung von den Radar-Rohdaten bis zu Zielspuren dar. Es wird ein vollständiger, auf dem Gaussian Mixture Probability Hypothesis Density Filter basierender Referenzalgorithmus für die Bodenzielverfolgung entwickelt. Insbesondere werden Jacobimatrizen der Beobachtungsfunktion hergeleitet. Sie werden in der Arbeit so dargestellt, dass sie direkt in einer Programmiersprache implementiert werden können. Im Zuge dieser Arbeit wurde ein Zielverfolgungs-Experiment mit dem Experimentalsystem PAMIR des Fraunhofer FHR durchgeführt. In dem Experiment wurden neben einer Vielzahl von Gelegenheitszielen zwei mit GPS-Geräten ausgerüstete Fahrzeuge von dem Radar beobachtet. Auf Basis dieses Experiments und des Referenzalgorithmus werden Zielverfolgungsergebnisse vorgestellt. Darüber hinaus erweitert diese Arbeit den Referenzalgorithmus um einen Parameter, der die Varianz der Richtungsschätzung des Zielsignals charakterisiert. Dieser Parameter wird adaptiv anhand der geschätzten Signalstärke und der Stärke störender Bodenrückstreuungen festgelegt. Der wesentliche Beitrag dieser Arbeit in Bezug auf diese Erweiterung ist eine gründliche experimentelle Validierung. Erstens zeigt der Vergleich von GPS- und Radar-basierten Richtungsschätzungen, dass dieser Parameter die Verteilung des Messfehlers exzellent beschreibt. Zweitens werden Zielverfolgungsergebnisse mit den GPS-Spuren verglichen. Es zeigt sich, dass der erweiterte Algorithmus sowohl in Bezug auf die Spurgenauigkeit als auch in Bezug auf die Spurkontinuität die Zielverfolgung verbessert

    A Comprehensive Uncertainty Analysis and Method of Geometric Calibration for a Circular Scanning Airborne Lidar

    Get PDF
    This dissertation describes an automated technique for ascertaining the values of the geometric calibration parameters of an airborne lidar. A least squares approach is employed that adjusts the point cloud to a single planar surface which could be either a narrow airport runway or a dynamic sea surface. Going beyond the customary three boresight angles, the proposed adjustment can determine up to eleven calibration parameters to a precision that renders a negligible contribution to the point cloud’s positional uncertainty. Presently under development is the Coastal Zone Mapping and Imaging Lidar (CZMIL), which, unlike most contemporary systems that use oscillating mirrors to reflect the beam, will use a circular spinning prism to refract the laser in the desired direction. This departure from the traditional scanner presents the potential for internal geometric misalignments not previously experienced. Rather than relying on past calibration practices (like requiring data be acquired over a pitched-roof), a more robust method of calibration is established which does not depend on the presence of any cultural features. To develop this new method of calibration, the laser point positioning equation for this lidar was developed first. The system was then simulated in the MATLAB environment. Using these artificial datasets, the behavior of each geometric parameter was systematically manipulated, understood and calibrated, while an optimal flight strategy for the calibration acquisition was simultaneously developed. Finally, the total propagated uncertainty (TPU) of the point cloud was determined using a propagation of variances. Using this TPU module, the strength of the calibration solution was assessed. For example, four flight lines each of 20 seconds in duration contained sufficient information to determine the calibration parameters to such a degree of confidence that their contribution to the final point cloud uncertainty was only 0.012m in the horizontal and 0.002m in the vertical (1σ)

    Shuttle synthetic aperture radar implementation study, volume 1

    Get PDF
    Results of an implementation study for a synthetic aperture radar for the space shuttle orbiter are described. The overall effort was directed toward the determination of the feasibility and usefulness of a multifrequency, multipolarization imaging radar for the shuttle orbiter. The radar is intended for earth resource monitoring as well as oceanographic and marine studies

    WIND TURBINE CLUTTER IN WEATHER RADAR: CHARACTERIZATION AND MITIGATION

    Get PDF
    With the rapid growth of the wind power industry, many commercial utility-scale wind turbines have been built across the country. These extremely large man-made structures are reported to have negative impact on nearby radars due to their complex scattering mechanisms. Various forms of clutter effect caused by wind turbines in the radar vicinity are generally referred to as the Wind Turbine Clutter (WTC). Due to the lack of awareness on this newly recognized clutter, many wind farms have been built in the Line of Sight (LOS) coverage of operational radars, potentially affecting their performance. Weather radar is the one affected most by WTC because the target of interest is precipitation particles, which is spatially inseparable from the wind turbine within the clutter contaminated resolution volume. Our study thus focuses on analyzing the cause of different types of clutter effects by wind turbines, characterizing the radar signatures of such clutter and mitigating the clutter effect for weather radar. The Micro-Doppler signature of the WTC reveals interesting time-variant spectrum features which are closely related to the instantaneous motions of the wind turbine. The complex motions of a wind turbine can be mostly characterized by three rotations: roll, pitch and yaw. Electromagnetic (EM) characterization of such a dynamic electrical large target is challenging. Various scattering mechanisms are analyzed and the back scattered field and RCS of the wind turbine are computed using commercial EM solver and a hybrid high-frequency approximation approach developed from our study. Field measurements were carried out by deploying the mobile radar to wind farms. The measurements give us the first non-aliased Doppler spectrum of wind turbines. In order to synchronize the wind turbine motion with radar data acquisition, the Radar Wind Turbine Testbed (RWT2^2) was developed for indoor scaled measurements, which includes the scaled wind turbine model and the scatterometer. Both frequency and time domain measurements were made to characterize the statistics of return signal from the wind turbine model. Several mitigation schemes developed from our study will be discussed, including the telemetry based method, the Adaptive Spectrum Processing (ASP) and the mitigation scheme for moment data based on the Maximum A Posterior (MAP) criteria. A thorough analysis of utilizing LOS avoidance to prevent WTC at the first place will be presented at the end

    Project MEDSAT: The design of a remote sensing platform for malaria research and control

    Get PDF
    Project MEDSAT was proposed with the specific goal of designing a satellite to remotely sense pertinent information useful in establishing strategies to control malaria. The 340 kg MEDSAT satellite is to be inserted into circular earth orbit aboard the Pegasus Air-Launched Space Booster at an inclination of 21 degrees and an altitude of 473 km. It is equipped with a synthetic aperture radar and a visible thermal/infrared sensor to remotely sense conditions at the target area of Chiapas, Mexico. The orbit is designed so that MEDSAT will pass over the target site twice each day. The data from each scan will be downlinked to Hawaii for processing, resulting in maps indicating areas of high malaria risk. These will be distributed to health officials at the target site. A relatively inexpensive launch by Pegasus and a design using mainly proven, off-the-shelf technology permit a low mission cost, while innovations in the satellite controls and the scientific instruments allow a fairly complex mission
    corecore