605 research outputs found

    Abnormal Excitability of Oblique Dendrites Implicated in Early Alzheimer's: A Computational Study

    Get PDF
    The integrative properties of cortical pyramidal dendrites are essential to the neural basis of cognitive function, but the impact of amyloid beta protein (aβ) on these properties in early Alzheimer's is poorly understood. In animal models, electrophysiological studies of proximal dendrites have shown that aβ induces hyperexcitability by blocking A-type K+ currents (IA), disrupting signal integration. The present study uses a computational approach to analyze the hyperexcitability induced in distal dendrites beyond the experimental recording sites. The results show that back-propagating action potentials in the dendrites induce hyperexcitability and excessive calcium concentrations not only in the main apical trunk of pyramidal cell dendrites, but also in their oblique dendrites. Evidence is provided that these thin branches are particularly sensitive to local reductions in IA. The results suggest the hypothesis that the oblique branches may be most vulnerable to disruptions of IA by early exposure to aβ, and point the way to further experimental analysis of these actions as factors in the neural basis of the early decline of cognitive function in Alzheimer's

    Location and function of the slow afterhyperpolarization channels in the basolateral amygdala

    Get PDF
    The basolateral amygdala (BLA) assigns emotional significance to sensory stimuli. This association results in a change in the output (action potentials) of BLA projection neurons in response to the stimulus. Neuronal output is controlled by the intrinsic excitability of the neuron. A major determinant of intrinsic excitability in these neurons is the slow after hyperpolarization (sAHP) that follows action potential (AP) trains and produces spike-frequency adaptation. The sAHP is mediated by a slow calcium-activated potassium current (sI(AHP)), but little is known about the channels that underlie this current. Here, using whole-cell patch-clamp recordings and high-speed calcium imaging from rat BLA projection neurons, we examined the location and function of these channels. We determined the location of the sI(AHP) by applying a hyperpolarizing voltage step during the sI(AHP) and measuring the time needed for the current to adapt to the new command potential, a function of its electrotonic distance from the somatic recording electrode. Channel location was also probed by focally uncaging calcium using a UV laser. Both methodologies indicated that, in BLA neurons, the sI(AHP) is primarily located in the dendritic tree. EPSPs recorded at the soma were smaller, decayed faster, and showed less summation during the sAHP. Adrenergic stimulation and buffering calcium reduced the sAHP and the attenuation of the EPSP during the sAHP. The sAHP also modulated the AP in the dendrite, reducing the calcium response evoked by a single AP. Thus, in addition to mediating spike-frequency adaptation, the sI(AHP) modulates communication between the soma and the dendrite

    Dendritic mechanisms controlling spike-timing dependent synaptic plasticity

    Get PDF
    The ability of neurons to modulate the strength of their synaptic connections has been shown to depend on the relative timing of pre- and postsynaptic action potentials. This form of synaptic plasticity, called spike-timing-dependent plasticity (STDP), has become an attractive model for learning at the single-cell level. Yet, despite its popularity in experimental and theoretical neuroscience, the influence of dendritic mechanisms in the induction of STDP has been largely overlooked. Several recent studies have investigated how active dendritic properties and synapse location within the dendritic tree influence STDP. These studies suggest the existence of learning rules that depend on firing mode and subcellular input location, adding unanticipated complexity to STDP. Here, we propose a new look at STDP that is focused on processing at the postsynaptic site in the dendrites, rather than on spike-timing at the cell body

    Influence of the dentritic morphology on electrophysiological responses of thalamocortical neurons

    Get PDF
    Les neurones thalamiques de relai ont un rôle exclusif dans la transformation et de transfert de presque toute l'information sensorielle dans le cortex. L'intégration synaptique et la réponse électrophysiologique des neurones thalamiques de relai sont déterminées non seulement par l’état du réseau impliqué, mais ils sont également contrôlés par leurs propriétés intrinsèques tels les divers canaux ioniques voltage-dépendants ainsi que l’arborisation dendritique élaboré. Par conséquent, investiguer sur le profil complexe de morphologie dendritique et sur les propriétés dendritiques actives révèle des renseignements importants sur la fonction d'entrée-sortie de neurones thalamiques de relai. Dans cette étude, nous avons reconstruit huit neurones thalamocorticaux (TC) du noyau VPL de chat adulte. En se basant sur ces données morphologiques complètes, nous avons développé plusieurs modèles multicompartimentaux afin de trouver un rôle potentiellement important des arbres dendritiques des neurones de TC dans l'intégration synaptique et l’intégration neuronale. L'analyse des caractéristiques morphologiques des neurones TC accordent des valeurs précises à des paramètres géométriques semblables ou différents de ceux publiés antérieurement. En outre, cette analyse fait ressortir de tous nouveaux renseignements concernant le patron de connectivité entre les sections dendritiques telles que l'index de l'asymétrie et la longueur de parcours moyen (c'est-à-dire, les paramètres topologiques). Nous avons confirmé l’étendue des valeurs rapportée antérieurement pour plusieurs paramètres géométriques tels que la zone somatique (2956.24±918.89 m2), la longueur dendritique totale (168017.49±4364.64 m) et le nombre de sous-arbres (8.3±1.5) pour huit neurones TC. Cependant, contrairement aux données rapportées antérieurement, le patron de ramification dendritique (avec des cas de bifurcation 98 %) ne suit pas la règle de puissance de Rall 3/2 pour le ratio géométrique (GR), et la valeur moyenne de GR pour un signal de propagation est 2,5 fois plus grande que pour un signal rétropropagé. Nous avons également démontré une variabilité significative dans l'index de symétrie entre les sous-arbres de neurones TC, mais la longueur du parcours moyen n'a pas montré une grande variation à travers les ramifications dendritiques des différents neurones. Nous avons examiné la conséquence d’une distribution non-uniforme des canaux T le long de l'arbre dendritique sur la réponse électrophysiologique émergeante, soit le potentiel Ca 2+ à seuil bas (low-threshold calcium spike, LTS) des neurones TC. En appliquant l'hypothèse du «coût minimal métabolique», nous avons constaté que le neurone modélisé nécessite un nombre minimal de canaux-T pour générer un LTS, lorsque les canaux-T sont situés dans les dendrites proximales. Dans la prochaine étude, notre modèle informatique a illustré l'étendue d'une rétropropagation du potentiel d'action et de l'efficacité de la propagation vers des PPSEs générés aux branches dendritiques distales. Nous avons démontré que la propagation dendritique des signaux électriques est fortement contrôlée par les paramètres morphologiques comme illustré par les différents paliers de polarisation obtenus par un neurone à équidistance de soma pendant la propagation et la rétropropagation des signaux électriques. Nos résultats ont révélé que les propriétés géométriques (c.-à-d. diamètre, GR) ont un impact plus fort sur la propagation du signal électrique que les propriétés topologiques. Nous concluons que (1) la diversité dans les propriétés morphologiques entre les sous-arbres d'un seul neurone TC donne une capacité spécifique pour l'intégration synaptique et l’intégration neuronale des différents dendrites, (2) le paramètre géométrique d'un arbre dendritique fournissent une influence plus élevée sur le contrôle de l'efficacité synaptique et l'étendue du potentiel d'action rétropropagé que les propriétés topologiques, (3) neurones TC suivent le principe d’optimisation pour la distribution de la conductance voltage-dépendant sur les arbres dendritiques.Thalamic relay neurons have an exclusive role in processing and transferring nearly all sensory information into the cortex. The synaptic integration and the electrophysiological response of thalamic relay neurons are determined not only by a state of the involved network, but they are also controlled by their intrinsic properties; such as diverse voltage-dependent ionic channels as well as by elaborated dendritic arborization. Therefore, investigating the complex pattern of dendritic morphology and dendritic active properties reveals important information on the input-output function of thalamic relay neurons. In this study, we reconstructed eight thalamocortical (TC) neurons from the VPL nucleus of adult cats. Based on these complete morphological data, we developed several multi-compartment models in order to find a potentially important role for dendritic trees of TC neurons in the synaptic integration and neuronal computation. The analysis of morphological features of TC neurons yield precise values of geometrical parameters either similar or different from those previously reported. In addition, this analysis extracted new information regarding the pattern of connectivity between dendritic sections such as asymmetry index and mean path length (i.e., topological parameters). We confirmed the same range of previously reported value for several geometric parameters such as the somatic area (2956.24±918.89 m2), the total dendritic length (168017.49±4364.64 m) and the number of subtrees (8.3±1.5) for eight TC neurons. However, contrary to previously reported data, the dendritic branching pattern (with 98% bifurcation cases) does not follow Rall’s 3/2 power rule for the geometrical ratio (GR), and the average GR value for a forward propagation signal was 2.5 times bigger than for a backward propagating signal. We also demonstrated a significant variability in the symmetry index between subtrees of TC neurons, but the mean path length did not show a large variation through the dendritic arborizations of different neurons. We examined the consequence of non-uniform distribution of T-channels along the dendritic tree on the prominent electrophysiological response, the low-threshold Ca2+ spike (LTS) of TC neurons. By applying the hypothesis of “minimizing metabolic cost”, we found that the modeled neuron needed a minimum number of T-channels to generate low-threshold Ca2+ spike (LTS), when T-channels were located in proximal dendrites. In the next study, our computational model illustrated the extent of an action potential back propagation and the efficacy of forward propagation of EPSPs arriving at the distal dendritic branches. We demonstrated that dendritic propagation of electrical signals is strongly controlled by morphological parameters as shown by different levels of polarization achieved by a neuron at equidistance from the soma during back and forward propagation of electrical signals. Our results revealed that geometrical properties (i.e. diameter, GR) have a stronger impact on the electrical signal propagation than topological properties. We conclude that (1) diversity in the morphological properties between subtrees of a single TC neuron lead to a specific ability for synaptic integration and neuronal computation of different dendrites, (2) geometrical parameter of a dendritic tree provide higher influence on the control of synaptic efficacy and the extent of the back propagating action potential than topological properties, (3) TC neurons follow the optimized principle for distribution of voltage-dependent conductance on dendritic trees

    Dendritic distributions of l\u3csub\u3eh\u3c/sub\u3e channels in experimentally-derived multi-compartment models of oriens-lacunosum/moleculare (O-LM) hippocampal interneurons

    Get PDF
    The O-LM cell type mediates feedback inhibition onto hippocampal pyramidal cells and gates information flow in the CA1. Its functions depend on the presence of voltage-gated channels (VGCs), which affect its integrative properties and response to synaptic input. Given the challenges associated with determining densities and distributions of VGCs on interneuron dendrites, we take advantage of computational modeling to consider different possibilities. In this work, we focus on hyperpolarization-activated channels (h-channels) in O-LM cells. While h-channels are known to be present in O-LM cells, it is unknown whether they are present on their dendrites. In previous work, we used ensemble modeling techniques with experimental data to obtain insights into potentially important conductance balances. We found that the best O-LM models that included uniformly distributed h-channels in the dendrites could not fully capture the “sag” response. This led us to examine activation kinetics and non-uniform distributions of h-channels in the present work. In tuning our models, we found that different kinetics and non-uniform distributions could better reproduce experimental O-LM cell responses. In contrast to CA1 pyramidal cells where higher conductance densities of h-channels occur in more distal dendrites, decreasing conductance densities of h-channels away from the soma were observed in O-LM models. Via an illustrative scenario, we showed that having dendritic h-channels clearly speeds up back-propagating action potentials in O-LM cells, unlike when h-channels are present only in the soma. Although the present results were morphology-dependent, our work shows that it should be possible to determine the distributions and characteristics of O-LM cells with recordings and morphologies from the same cell. We hypothesize that h-channels are distributed in O-LM cell dendrites and endow them with particular synaptic integration properties that shape information flow in hippocampus

    Fast-spiking parvalbumin^+ GABAergic interneurons: From cellular design to microcircuit function

    Get PDF
    The success story of fast-spiking, parvalbumin-positive (PV+) GABAergic interneurons (GABA, γ-aminobutyric acid) in the mammalian central nervous system is noteworthy. In 1995, the properties of these interneurons were completely unknown. Twenty years later, thanks to the massive use of subcellular patch-clamp techniques, simultaneous multiple-cell recording, optogenetics, in vivo measurements, and computational approaches, our knowledge about PV+ interneurons became more extensive than for several types of pyramidal neurons. These findings have implications beyond the “small world” of basic research on GABAergic cells. For example, the results provide a first proof of principle that neuroscientists might be able to close the gaps between the molecular, cellular, network, and behavioral levels, representing one of the main challenges at the present time. Furthermore, the results may form the basis for PV+ interneurons as therapeutic targets for brain disease in the future. However, much needs to be learned about the basic function of these interneurons before clinical neuroscientists will be able to use PV+ interneurons for therapeutic purposes

    The physiological variability of channel density in hippocampal CA1 pyramidal cells and interneurons explored using a unified data-driven modeling workflow

    Get PDF
    Every neuron is part of a network, exerting its function by transforming multiple spatiotemporal synaptic input patterns into a single spiking output. This function is specified by the particular shape and passive electrical properties of the neuronal membrane, and the composition and spatial distribution of ion channels across its processes. For a variety of physiological or pathological reasons, the intrinsic input/output function may change during a neuron’s lifetime. This process results in high variability in the peak specific conductance of ion channels in individual neurons. The mechanisms responsible for this variability are not well understood, although there are clear indications from experiment and modeling that degeneracy and correlation among multiple channels may be involved. Here, we studied this issue in biophysical models of hippocampal CA1 pyramidal neurons and interneurons. Using a unified data-driven simulation workflow and starting from a set of experimental recordings and morphological reconstructions obtained from rats, we built and analyzed several ensembles of morphologically and biophysically accurate single cell models with intrinsic electrophysiological properties consistent with experimental findings. The results suggest that the set of conductances expressed in any given hippocampal neuron may be considered as belonging to two groups: one subset is responsible for the major characteristics of the firing behavior in each population and the other responsible for a robust degeneracy. Analysis of the model neurons suggests several experimentally testable predictions related to the combination and relative proportion of the different conductances that should be expressed on the membrane of different types of neurons for them to fulfill their role in the hippocampus circuitry

    Cholinergic modulation of CA3 synaptic transmission and integration

    Get PDF
    • …
    corecore