57,247 research outputs found

    Influence of Personal Preferences on Link Dynamics in Social Networks

    Full text link
    We study a unique network dataset including periodic surveys and electronic logs of dyadic contacts via smartphones. The participants were a sample of freshmen entering university in the Fall 2011. Their opinions on a variety of political and social issues and lists of activities on campus were regularly recorded at the beginning and end of each semester for the first three years of study. We identify a behavioral network defined by call and text data, and a cognitive network based on friendship nominations in ego-network surveys. Both networks are limited to study participants. Since a wide range of attributes on each node were collected in self-reports, we refer to these networks as attribute-rich networks. We study whether student preferences for certain attributes of friends can predict formation and dissolution of edges in both networks. We introduce a method for computing student preferences for different attributes which we use to predict link formation and dissolution. We then rank these attributes according to their importance for making predictions. We find that personal preferences, in particular political views, and preferences for common activities help predict link formation and dissolution in both the behavioral and cognitive networks.Comment: 12 page

    Detecting Strong Ties Using Network Motifs

    Full text link
    Detecting strong ties among users in social and information networks is a fundamental operation that can improve performance on a multitude of personalization and ranking tasks. Strong-tie edges are often readily obtained from the social network as users often participate in multiple overlapping networks via features such as following and messaging. These networks may vary greatly in size, density and the information they carry. This setting leads to a natural strong tie detection task: given a small set of labeled strong tie edges, how well can one detect unlabeled strong ties in the remainder of the network? This task becomes particularly daunting for the Twitter network due to scant availability of pairwise relationship attribute data, and sparsity of strong tie networks such as phone contacts. Given these challenges, a natural approach is to instead use structural network features for the task, produced by {\em combining} the strong and "weak" edges. In this work, we demonstrate via experiments on Twitter data that using only such structural network features is sufficient for detecting strong ties with high precision. These structural network features are obtained from the presence and frequency of small network motifs on combined strong and weak ties. We observe that using motifs larger than triads alleviate sparsity problems that arise for smaller motifs, both due to increased combinatorial possibilities as well as benefiting strongly from searching beyond the ego network. Empirically, we observe that not all motifs are equally useful, and need to be carefully constructed from the combined edges in order to be effective for strong tie detection. Finally, we reinforce our experimental findings with providing theoretical justification that suggests why incorporating these larger sized motifs as features could lead to increased performance in planted graph models.Comment: To appear in Proceedings of WWW 2017 (Web-science track

    Link Prediction via Matrix Completion

    Full text link
    Inspired by practical importance of social networks, economic networks, biological networks and so on, studies on large and complex networks have attracted a surge of attentions in the recent years. Link prediction is a fundamental issue to understand the mechanisms by which new links are added to the networks. We introduce the method of robust principal component analysis (robust PCA) into link prediction, and estimate the missing entries of the adjacency matrix. On one hand, our algorithm is based on the sparsity and low rank property of the matrix, on the other hand, it also performs very well when the network is dense. This is because a relatively dense real network is also sparse in comparison to the complete graph. According to extensive experiments on real networks from disparate fields, when the target network is connected and sufficiently dense, whatever it is weighted or unweighted, our method is demonstrated to be very effective and with prediction accuracy being considerably improved comparing with many state-of-the-art algorithms

    Predicting Successful Memes using Network and Community Structure

    Full text link
    We investigate the predictability of successful memes using their early spreading patterns in the underlying social networks. We propose and analyze a comprehensive set of features and develop an accurate model to predict future popularity of a meme given its early spreading patterns. Our paper provides the first comprehensive comparison of existing predictive frameworks. We categorize our features into three groups: influence of early adopters, community concentration, and characteristics of adoption time series. We find that features based on community structure are the most powerful predictors of future success. We also find that early popularity of a meme is not a good predictor of its future popularity, contrary to common belief. Our methods outperform other approaches, particularly in the task of detecting very popular or unpopular memes.Comment: 10 pages, 6 figures, 2 tables. Proceedings of 8th AAAI Intl. Conf. on Weblogs and social media (ICWSM 2014

    Effective and Efficient Similarity Index for Link Prediction of Complex Networks

    Get PDF
    Predictions of missing links of incomplete networks like protein-protein interaction networks or very likely but not yet existent links in evolutionary networks like friendship networks in web society can be considered as a guideline for further experiments or valuable information for web users. In this paper, we introduce a local path index to estimate the likelihood of the existence of a link between two nodes. We propose a network model with controllable density and noise strength in generating links, as well as collect data of six real networks. Extensive numerical simulations on both modeled networks and real networks demonstrated the high effectiveness and efficiency of the local path index compared with two well-known and widely used indices, the common neighbors and the Katz index. Indeed, the local path index provides competitively accurate predictions as the Katz index while requires much less CPU time and memory space, which is therefore a strong candidate for potential practical applications in data mining of huge-size networks.Comment: 8 pages, 5 figures, 3 table
    • …
    corecore