1,959 research outputs found

    Transport in three-dimensional topological insulators: theory and experiment

    Full text link
    This article reviews recent theoretical and experimental work on transport due to the surface states of three-dimensional topological insulators. The theoretical focus is on longitudinal transport in the presence of an electric field, including Boltzmann transport, quantum corrections and weak localization, as well as longitudinal and Hall transport in the presence of both electric and magnetic fields and/or magnetizations. Special attention is paid to transport at finite doping, to the π\pi-Berry phase, which leads to the absence of backscattering, Klein tunneling and half-quantized Hall response. Signatures of surface states in ordinary transport and magnetotransport are clearly identified. The review also covers transport experiments of the past years, reviewing the initial obscuring of surface transport by bulk transport, and the way transport due to the surface states has increasingly been identified experimentally. Current and likely future experimental challenges are given prominence and the current status of the field is assessed.Comment: Review article to appear in Physica

    Weak localization in ferromagnets with spin-orbit interaction

    Full text link
    Weak localization corrections to conductivity of ferromagnetic systems are studied theoretically in the case when spin-orbit interaction plays a significant role. Two cases are analyzed in detail: (i) the case when the spin-orbit interaction is due to scattering from impurities, and (ii) the case when the spin-orbit interaction results from reduced dimensionality of the system and is of the Bychkov-Rashba type. Results of the analysis show that the localization corrections to conductivity of ferromagnetic metals lead to a negative magnetoresistance -- also in the presence of the spin-orbit scattering. Positive magnetoresistance due to weak antilocalization, typical of nonmagnetic systems, does not occur in ferromagnetic systems. In the case of two-dimensional ferromagnets, the quantum corrections depend on the magnetization orientation with respect to the plane of the system.Comment: 14 pages with 10 figures, corrected and extended version, Sec.7 adde
    corecore