2,409 research outputs found

    The Appreciative Heart: The Psychophysiology of Positive Emotions and Optimal Functioning

    Get PDF
    This monograph is an overview of Institute of HeartMath's research on the physiological correlates of positive emotions and the science underlying two core HeartMath techniques which supports Heart-Based Living. The heart's connection with love and other positive emotions has survived throughout millennia and across many diverse cultures. New empirical research is providing scientific validation for this age-old association. This 21-page monograph offers a comprehensive understanding of the Institute of HeartMath's cutting-edge research exploring the heart's central role in emotional experience. Described in detail is physiological coherence, a distinct mode of physiological functioning, which is generated during sustained positive emotions and linked with beneficial health and performance-related outcomes. The monograph also provides steps and applications of two HeartMath techniques, Freeze-Frame(R) and Heart Lock-In(R), which engage the heart to help transform stress and produce sustained states of coherence. Data from outcome studies are presented, which suggest that these techniques facilitate a beneficial repatterning process at the mental, emotional and physiological levels

    Mechanisms of Zero-Lag Synchronization in Cortical Motifs

    Get PDF
    Zero-lag synchronization between distant cortical areas has been observed in a diversity of experimental data sets and between many different regions of the brain. Several computational mechanisms have been proposed to account for such isochronous synchronization in the presence of long conduction delays: Of these, the phenomenon of "dynamical relaying" - a mechanism that relies on a specific network motif - has proven to be the most robust with respect to parameter mismatch and system noise. Surprisingly, despite a contrary belief in the community, the common driving motif is an unreliable means of establishing zero-lag synchrony. Although dynamical relaying has been validated in empirical and computational studies, the deeper dynamical mechanisms and comparison to dynamics on other motifs is lacking. By systematically comparing synchronization on a variety of small motifs, we establish that the presence of a single reciprocally connected pair - a "resonance pair" - plays a crucial role in disambiguating those motifs that foster zero-lag synchrony in the presence of conduction delays (such as dynamical relaying) from those that do not (such as the common driving triad). Remarkably, minor structural changes to the common driving motif that incorporate a reciprocal pair recover robust zero-lag synchrony. The findings are observed in computational models of spiking neurons, populations of spiking neurons and neural mass models, and arise whether the oscillatory systems are periodic, chaotic, noise-free or driven by stochastic inputs. The influence of the resonance pair is also robust to parameter mismatch and asymmetrical time delays amongst the elements of the motif. We call this manner of facilitating zero-lag synchrony resonance-induced synchronization, outline the conditions for its occurrence, and propose that it may be a general mechanism to promote zero-lag synchrony in the brain.Comment: 41 pages, 12 figures, and 11 supplementary figure

    The spectro-contextual encoding and retrieval theory of episodic memory.

    Get PDF
    The spectral fingerprint hypothesis, which posits that different frequencies of oscillations underlie different cognitive operations, provides one account for how interactions between brain regions support perceptual and attentive processes (Siegel etal., 2012). Here, we explore and extend this idea to the domain of human episodic memory encoding and retrieval. Incorporating findings from the synaptic to cognitive levels of organization, we argue that spectrally precise cross-frequency coupling and phase-synchronization promote the formation of hippocampal-neocortical cell assemblies that form the basis for episodic memory. We suggest that both cell assembly firing patterns as well as the global pattern of brain oscillatory activity within hippocampal-neocortical networks represents the contents of a particular memory. Drawing upon the ideas of context reinstatement and multiple trace theory, we argue that memory retrieval is driven by internal and/or external factors which recreate these frequency-specific oscillatory patterns which occur during episodic encoding. These ideas are synthesized into a novel model of episodic memory (the spectro-contextual encoding and retrieval theory, or "SCERT") that provides several testable predictions for future research

    Low-frequency oscillatory correlates of auditory predictive processing in cortical-subcortical networks: a MEG-study

    Get PDF
    Emerging evidence supports the role of neural oscillations as a mechanism for predictive information processing across large-scale networks. However, the oscillatory signatures underlying auditory mismatch detection and information flow between brain regions remain unclear. To address this issue, we examined the contribution of oscillatory activity at theta/alpha-bands (4–8/8–13 Hz) and assessed directed connectivity in magnetoencephalographic data while 17 human participants were presented with sound sequences containing predictable repetitions and order manipulations that elicited prediction-error responses. We characterized the spectro-temporal properties of neural generators using a minimum-norm approach and assessed directed connectivity using Granger Causality analysis. Mismatching sequences elicited increased theta power and phase-locking in auditory, hippocampal and prefrontal cortices, suggesting that theta-band oscillations underlie prediction-error generation in cortical-subcortical networks. Furthermore, enhanced feedforward theta/alpha-band connectivity was observed in auditory-prefrontal networks during mismatching sequences, while increased feedback connectivity in the alpha-band was observed between hippocampus and auditory regions during predictable sounds. Our findings highlight the involvement of hippocampal theta/alpha-band oscillations towards auditory prediction-error generation and suggest a spectral dissociation between inter-areal feedforward vs. feedback signalling, thus providing novel insights into the oscillatory mechanisms underlying auditory predictive processing

    Neural Dynamics of Autistic Behaviors: Cognitive, Emotional, and Timing Substrates

    Full text link
    What brain mechanisms underlie autism and how do they give rise to autistic behavioral symptoms? This article describes a neural model, called the iSTART model, which proposes how cognitive, emotional, timing, and motor processes may interact together to create and perpetuate autistic symptoms. These model processes were originally developed to explain data concerning how the brain controls normal behaviors. The iSTART model shows how autistic behavioral symptoms may arise from prescribed breakdowns in these brain processes.Air Force Office of Scientific Research (F49620-01-1-0397); Office of Naval Research (N00014-01-1-0624

    Consequences of converting graded to action potentials upon neural information coding and energy efficiency

    Get PDF
    Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na+ and K+ channels, with generator potential and graded potential models lacking voltage-gated Na+ channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na+ channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a β€˜footprint’ in the generator potential that obscures incoming signals. These three processes reduce information rates by ~50% in generator potentials, to ~3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation

    Synchronization Through Uncorrelated Noise in Excitatory-Inhibitory Networks

    Get PDF
    Β© 2022 Rebscher, Obermayer and Metzner. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY)Gamma rhythms play a major role in many different processes in the brain, such as attention, working memory, and sensory processing. While typically considered detrimental, counterintuitively noise can sometimes have beneficial effects on communication and information transfer. Recently, Meng and Riecke showed that synchronization of interacting networks of inhibitory neurons in the gamma band (i.e., gamma generated through an ING mechanism) increases while synchronization within these networks decreases when neurons are subject to uncorrelated noise. However, experimental and modeling studies point towardz an important role of the pyramidal-interneuronal network gamma (PING) mechanism in the cortex. Therefore, we investigated the effect of uncorrelated noise on the communication between excitatory-inhibitory networks producing gamma oscillations via a PING mechanism. Our results suggest that, at least in a certain range of noise strengths and natural frequency differences between the regions, synaptic noise can have a supporting role in facilitating inter-regional communication, similar to the ING case for a slightly larger parameter range. Furthermore, the noise-induced synchronization between networks is generated via a different mechanism than when synchronization is mediated by strong synaptic coupling. Noise-induced synchronization is achieved by lowering synchronization within networks which allows the respective other network to impose its own gamma rhythm resulting in synchronization between networks.Peer reviewedFinal Published versio
    • …
    corecore