2,800 research outputs found

    Stone tools and the linguistic capabilities of earlier hominids

    Get PDF
    The evolution of human manipulative abilities may be clearly linked to the evolution of speech motor control Both creativity and complexity in vocal and manipulative gestures may be closely linked to a single dimension of brain evolution — the evolution of absolute brain size. Inferring the linguistic capabilities of earlier hominids from their lithic artefacts, however, required us to take account of domain-specific constraints on manipulative skill In this article we report on a pilot flint-knapping experiment designed to identify such constraints ‘in action’

    Genetic variations within human gained enhancer elements affect human brain sulcal morphology.

    Get PDF
    The expansion of the cerebral cortex is one of the most distinctive changes in the evolution of the human brain. Cortical expansion and related increases in cortical folding may have contributed to emergence of our capacities for high-order cognitive abilities. Molecular analysis of humans, archaic hominins, and non-human primates has allowed identification of chromosomal regions showing evolutionary changes at different points of our phylogenetic history. In this study, we assessed the contributions of genomic annotations spanning 30 million years to human sulcal morphology measured via MRI in more than 18,000 participants from the UK Biobank. We found that variation within brain-expressed human gained enhancers, regulatory genetic elements that emerged since our last common ancestor with Old World monkeys, explained more trait heritability than expected for the left and right calloso-marginal posterior fissures and the right central sulcus. Intriguingly, these are sulci that have been previously linked to the evolution of locomotion in primates and later on bipedalism in our hominin ancestors

    Tracking Development of the Corpus Callosum in Fetal and Early Postnatal Baboons Using Magnetic Resonance Imaging

    Get PDF
    Although the maturation of the corpus callosum (CC) can serve as a sensitive marker for normative antenatal and postnatal brain development, little is known about its development across this critical period. While high-resolution magnetic resonance imaging can provide an opportunity to examine normative brain development in humans, concerns remain over the exposure of developing fetuses to non-essential imaging. Nonhuman primates can provide a valuable model for normative brain maturation. Baboons share several important developmental characteristics with humans, including a highly orchestrated pattern of cerebral development. Developmental changes in total CC area and its subdivisions were examined across the antenatal (weeks 17 – 26 of 28 weeks total gestation) and early postnatal (to week 32) period in baboons (Papio hamadryas anubis). Thirteen fetal and sixteen infant baboons were studied using high-resolution MRI. During the period of primary gyrification, the total area of the CC increased by a magnitude of five. By postnatal week 32, the total CC area attained only 51% of the average adult area. CC subdivisions showed non-uniform increases in area, throughout development. The splenium showed the most maturation by postnatal week 32, attaining 55% of the average adult value. The subdivisions of the genu and anterior midbody showed the least maturation by postnatal week 32, attaining 50% and 49% of the average adult area. Thus, the CC of baboons shows continued growth past the postnatal period. These age-related changes in the developing baboon CC are consistent with the developmental course in humans

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 182, July 1978

    Get PDF
    This bibliography lists 165 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1978

    Respiratory, postural and spatio-kinetic motor stabilization, internal models, top-down timed motor coordination and expanded cerebello-cerebral circuitry: a review

    Get PDF
    Human dexterity, bipedality, and song/speech vocalization in Homo are reviewed within a motor evolution perspective in regard to 

(i) brain expansion in cerebello-cerebral circuitry, 
(ii) enhanced predictive internal modeling of body kinematics, body kinetics and action organization, 
(iii) motor mastery due to prolonged practice, 
(iv) task-determined top-down, and accurately timed feedforward motor adjustment of multiple-body/artifact elements, and 
(v) reduction in automatic preflex/spinal reflex mechanisms that would otherwise restrict such top-down processes. 

Dual-task interference and developmental neuroimaging research argues that such internal modeling based motor capabilities are concomitant with the evolution of 
(vi) enhanced attentional, executive function and other high-level cognitive processes, and that 
(vii) these provide dexterity, bipedality and vocalization with effector nonspecific neural resources. 

The possibility is also raised that such neural resources could 
(viii) underlie human internal model based nonmotor cognitions. 
&#xa

    Developmental time windows for axon growth influence neuronal network topology

    Full text link
    Early brain connectivity development consists of multiple stages: birth of neurons, their migration and the subsequent growth of axons and dendrites. Each stage occurs within a certain period of time depending on types of neurons and cortical layers. Forming synapses between neurons either by growing axons starting at similar times for all neurons (much-overlapped time windows) or at different time points (less-overlapped) may affect the topological and spatial properties of neuronal networks. Here, we explore the extreme cases of axon formation especially concerning short-distance connectivity during early development, either starting at the same time for all neurons (parallel, i.e. maximally-overlapped time windows) or occurring for each neuron separately one neuron after another (serial, i.e. no overlaps in time windows). For both cases, the number of potential and established synapses remained comparable. Topological and spatial properties, however, differed: neurons that started axon growth early on in serial growth achieved higher out-degrees, higher local efficiency, and longer axon lengths while neurons demonstrated more homogeneous connectivity patterns for parallel growth. Second, connection probability decreased more rapidly with distance between neurons for parallel growth than for serial growth. Third, bidirectional connections were more numerous for parallel growth. Finally, we tested our predictions with C. elegans data. Together, this indicates that time windows for axon growth influence the topological and spatial properties of neuronal networks opening the possibility to a posteriori estimate developmental mechanisms based on network properties of a developed network.Comment: Biol Cybern. 2015 Jan 30. [Epub ahead of print

    In Vivo Imaging to Characterize Dynamic Tissue Responses after Neural Electrode Implantation

    Get PDF
    Implantable neural electrodes are promising technologies to restore motor, sensory, and cognitive function in many neural pathologies through brain-computer interfacing (BCI). Many BCI applications require electrode implantation within neural tissue to resolve and/or modulate the physiological activity of individual neurons via electrical recording and stimulation. This invasive implantation leads to acute and long-term deterioration of both the electrode device as well as the neurons surrounding the device. Ultimately, damage to the electrode and neural tissue results in electrode recording failure within the first years after implantation. Many strategies to improve BCI longevity focus on mitigating tissue damage through improving neuronal survival or reducing inflammatory activity around implants. Despite incremental improvements, electrode failure persists as an obstacle to wide-spread clinical deployment of BCIs. This can be partly attributed to an incomplete understanding of the biological correlates of recording performance. These correlates have largely been identified through post-mortem histological staining, which cannot capture dynamic changes in cellular physiology and morphology. In the following dissertation, we use longitudinal two-photon in vivo imaging to quantify how neurons, microglia, and meningeal immune cells are affected by an intracortical electrode during and after implantation in mouse cortex. We go beyond conventional histological techniques to show the time-course of neuronal injury and microglial recruitment after implantation. Neuronal injury occurs instantaneously, with prolonged, high calcium levels evident in neurons within 100 µm of implants. Microglial activation occurs within minutes of implantation and subsequent microglial encapsulation of electrodes can be modulated by bioactive surface coatings. Within the first day post-implant, there is high trafficking of peripheral immune cells through venules at the surface of the brain as well as along the electrode’s shank at the surface of the brain. Over the next month, calcium activity in neurons increases while the collagenous meningeal tissues at the surface of the brain thicken. We further show that meningeal thickening can have profound implications for devices implanted into non-human primates as well. In sum, these results define new potential therapeutic targets and windows that could improve the longevity of implantable neural electrodes
    • …
    corecore