164,756 research outputs found

    Delegation in Role-Based Access Control

    Full text link

    Role-based security for distributed object systems

    No full text
    This paper describes a security architecture designed to support role-based access control for distributed object systems in a large-scale, multi-organisational enterprise in which domains are used to group objects for specifying security policies. We use the concept of a role to define access control related to a position within an organisation although our role framework caters for the specification of both authorisation and obligation policies. Access control and authentication is implemented using security agents on a per host basis to achieve a high degree of transparency to the application level. Cascaded delegation of access rights is also supported. The domain based authentication service uses symmetric cryptography and is implemented by replicated servers which maintain minimal state

    Injecting Task Delegation Constraints into a Role-based Access Control Model

    Get PDF
    International audienceIn role-based access control models, delegation of authorityinvolves delegating roles that a user can assume or the set of permissions that he can acquire, to other users. Several role-based delegation models have been proposed in the literature. However, these models consider only delegation in presence of the role type, which have some inherent limitations to task delegation in workflow systems. In this paper, we address task delegation in a workflow and elaborate a security model supporting delegation constraints. Delegation constraints express security requirements with regards to task's resources, user's assignment and privileges (delegation of authority). Further, we show how, using a role-based security model, we inject formalised delegation constraints to compute delegation principals with their respective privileges

    Task Delegation Based Access Control Models for Workflow Systems

    Get PDF
    International audiencee-Government organisations are facilitated and conducted using workflow management systems. Role-based access control (RBAC) is recognised as an efficient access control model for large organisations. The application of RBAC in workflow systems cannot, however, grant permissions to users dynamically while business processes are being executed. We currently observe a move away from predefined strict workflow modelling towards approaches supporting flexibility on the organisational level. One specific approach is that of task delegation. Task delegation is a mechanism that supports organisational flexibility, and ensures delegation of authority in access control systems. In this paper, we propose a Task-oriented Access Control (TAC) model based on RBAC to address these requirements. We aim to reason about task from organisational perspectives and resources perspectives to analyse and specify authorisation constraints. Moreover, we present a fine grained access control protocol to support delegation based on the TAC model

    Modelling a Policy Role Based Access Control Mechanism for Task Delegation in a Nomadic Environment

    Get PDF
    Nomadic environments are governed by standard principles and lay down rules that should be followed to enable it meet set aim and objectives.  More recently, nomadic environments have virtually employed the use of Role Based Access Control (RBAC) Mechanisms to proffer access control solutions to role assignments which ordinarily would have be accomplished manually. In modelling systems for users in a nomadic environment, most RBAC mechanisms does not effectively consider the security lapses related to human to human task delegation. To avert this lapses, during system modelling and design, there is the need for software developers to consciously put into consideration the inclusion of organizational policy rules guiding role assignment and task delegation in a secured manner.   Failure to do so, may create usability and security issues resulting from a delegatee abusing his privileges in performing other tasks of the delegator. This paper is therefore aimed at using mathematical and algorithmic methods to model a policy based approach in implementing the Role Based Access Control mechanism for users in a nomadic environment. With this approach, task delegation can be implemented in a usable and secured manner

    Hierarchical Group and Attribute-Based Access Control: Incorporating Hierarchical Groups and Delegation into Attribute-Based Access Control

    Get PDF
    Attribute-Based Access Control (ABAC) is a promising alternative to traditional models of access control (i.e. Discretionary Access Control (DAC), Mandatory Access Control (MAC) and Role-Based Access control (RBAC)) that has drawn attention in both recent academic literature and industry application. However, formalization of a foundational model of ABAC and large-scale adoption is still in its infancy. The relatively recent popularity of ABAC still leaves a number of problems unexplored. Issues like delegation, administration, auditability, scalability, hierarchical representations, etc. have been largely ignored or left to future work. This thesis seeks to aid in the adoption of ABAC by filling in several of these gaps. The core contribution of this work is the Hierarchical Group and Attribute-Based Access Control (HGABAC) model, a novel formal model of ABAC which introduces the concept of hierarchical user and object attribute groups to ABAC. It is shown that HGABAC is capable of representing the traditional models of access control (MAC, DAC and RBAC) using this group hierarchy and that in many cases it’s use simplifies both attribute and policy administration. HGABAC serves as the basis upon which extensions are built to incorporate delegation into ABAC. Several potential strategies for introducing delegation into ABAC are proposed, categorized into families and the trade-offs of each are examined. One such strategy is formalized into a new User-to-User Attribute Delegation model, built as an extension to the HGABAC model. Attribute Delegation enables users to delegate a subset of their attributes to other users in an off-line manner (not requiring connecting to a third party). Finally, a supporting architecture for HGABAC is detailed including descriptions of services, high-level communication protocols and a new low-level attribute certificate format for exchanging user and connection attributes between independent services. Particular emphasis is placed on ensuring support for federated and distributed systems. Critical components of the architecture are implemented and evaluated with promising preliminary results. It is hoped that the contributions in this research will further the acceptance of ABAC in both academia and industry by solving the problem of delegation as well as simplifying administration and policy authoring through the introduction of hierarchical user groups

    Modeling Support for Role-Based Delegation in Process-Aware Information Systems

    Get PDF
    In the paper, an integrated approach for the modeling and enforcement of delegation policies in process-aware information systems is presented. In particular, a delegation extension for process-related role-based access control (RBAC) models is specified. The extension is generic in the sense that it can be used to extend process-aware information systems or process modeling languages with support for processrelated RBAC delegationmodels.Moreover, the detection of delegation-related conflicts is discussed and a set of pre-defined resolution strategies for each potential conflict is provided. Thereby, the design-time and runtime consistency of corresponding RBAC delegation models can be ensured. Based on a formal metamodel, UML2 modeling support for the delegation of roles, tasks, and duties is provided. A corresponding case study evaluates the practical applicability of the approach with real-world business processes. Moreover, the approach is implemented as an extension to the BusinessActivity library and runtime engine

    Assured information sharing for ad-hoc collaboration

    Get PDF
    Collaborative information sharing tends to be highly dynamic and often ad hoc among organizations. The dynamic natures and sharing patterns in ad-hoc collaboration impose a need for a comprehensive and flexible approach to reflecting and coping with the unique access control requirements associated with the environment. This dissertation outlines a Role-based Access Management for Ad-hoc Resource Shar- ing framework (RAMARS) to enable secure and selective information sharing in the het- erogeneous ad-hoc collaborative environment. Our framework incorporates a role-based approach to addressing originator control, delegation and dissemination control. A special trust-aware feature is incorporated to deal with dynamic user and trust management, and a novel resource modeling scheme is proposed to support fine-grained selective sharing of composite data. As a policy-driven approach, we formally specify the necessary pol- icy components in our framework and develop access control policies using standardized eXtensible Access Control Markup Language (XACML). The feasibility of our approach is evaluated in two emerging collaborative information sharing infrastructures: peer-to- peer networking (P2P) and Grid computing. As a potential application domain, RAMARS framework is further extended and adopted in secure healthcare services, with a unified patient-centric access control scheme being proposed to enable selective and authorized sharing of Electronic Health Records (EHRs), accommodating various privacy protection requirements at different levels of granularity

    A Shibboleth-protected privilege management infrastructure for e-science education

    Get PDF
    Simplifying access to and usage of large scale compute resources via the grid is of critical importance to encourage the uptake of e-research. Security is one aspect that needs to be made as simple as possible for end users. The ESP-Grid and DyVOSE projects at the National e-Science Centre (NeSC) at the University of Glasgow are investigating security technologies which will make the end-user experience of using the grid easier and more secure. In this paper, we outline how simplified (from the user experience) authentication and authorization of users are achieved through single usernames and passwords at users' home institutions. This infrastructure, which will be applied in the second year of the grid computing module part of the advanced MSc in Computing Science at the University of Glasgow, combines grid portal technology, the Internet2 Shibboleth Federated Access Control infrastructure, and the PERMS role-based access control technology. Through this infrastructure inter-institutional teaching can be supported where secure access to federated resources is made possible between sites. A key aspect of the work we describe here is the ability to support dynamic delegation of authority whereby local/remote administrators are able to dynamically assign meaningful privileges to remote/local users respectively in a trusted manner thus allowing for the dynamic establishment of virtual organizations with fine grained security at their heart

    Health Information System Role-Based Access Control Current Security Trends and Challenges

    Get PDF
    Objective. This article objective is to highlight implementation characteristics, concerns, or limitations over role-based access control (RBAC) use on health information system (HIS) using industry-focused literature review of current publishing for that purpose. Based on the findings, assessment for indication of RBAC is obsolete considering HIS authorization control needs. Method. We have selected articles related to our investigation theme "RBAC trends and limitations" in 4 different sources related to health informatics or to the engineering technical field. To do so, we have applied the following search query string: "Role-Based Access Control" OR "RBAC" AND "Health information System" OR "EHR" AND "Trends" OR "Challenges" OR "Security" OR "Authorization" OR "Attacks" OR "Permission Assignment" OR "Permission Relation" OR "Permission Mapping" OR "Constraint". We followed PRISMA applicable flow and general methodology used on software engineering for systematic review. Results. 20 articles were selected after applying inclusion and exclusion criteria resulting contributions from 10 different countries. 17 articles advocate RBAC adaptations. The main security trends and limitations mapped were related to emergency access, grant delegation, and interdomain access control. Conclusion. Several publishing proposed RBAC adaptations and enhancements in order to cope current HIS use characteristics. Most of the existent RBAC studies are not related to health informatics industry though. There is no clear indication of RBAC obsolescence for HIS use.Sao Paulo Federal University (Unifesp) sponsorshipUniv Fed Sao Paulo, Hlth Informat Dept, Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Hlth Informat Dept, Sao Paulo, SP, BrazilWeb of Scienc
    • …
    corecore