164,269 research outputs found

    Collaborative design : managing task interdependencies and multiple perspectives

    Get PDF
    This paper focuses on two characteristics of collaborative design with respect to cooperative work: the importance of work interdependencies linked to the nature of design problems; and the fundamental function of design cooperative work arrangement which is the confrontation and combination of perspectives. These two intrinsic characteristics of the design work stress specific cooperative processes: coordination processes in order to manage task interdependencies, establishment of common ground and negotiation mechanisms in order to manage the integration of multiple perspectives in design

    Coordination and control in project-based work: digital objects and infrastructures for delivery

    Get PDF
    A major infrastructure project is used to investigate the role of digital objects in the coordination of engineering design work. From a practice-based perspective, research emphasizes objects as important in enabling cooperative knowledge work and knowledge sharing. The term ‘boundary object’ has become used in the analysis of mutual and reciprocal knowledge sharing around physical and digital objects. The aim is to extend this work by analysing the introduction of an extranet into the public–private partnership project used to construct a new motorway. Multiple categories of digital objects are mobilized in coordination across heterogeneous, cross-organizational groups. The main findings are that digital objects provide mechanisms for accountability and control, as well as for mutual and reciprocal knowledge sharing; and that different types of objects are nested, forming a digital infrastructure for project delivery. Reconceptualizing boundary objects as a digital infrastructure for delivery has practical implications for management practices on large projects and for the use of digital tools, such as building information models, in construction. It provides a starting point for future research into the changing nature of digitally enabled coordination in project-based work

    Support for collaborative component-based software engineering

    Get PDF
    Collaborative system composition during design has been poorly supported by traditional CASE tools (which have usually concentrated on supporting individual projects) and almost exclusively focused on static composition. Little support for maintaining large distributed collections of heterogeneous software components across a number of projects has been developed. The CoDEEDS project addresses the collaborative determination, elaboration, and evolution of design spaces that describe both static and dynamic compositions of software components from sources such as component libraries, software service directories, and reuse repositories. The GENESIS project has focussed, in the development of OSCAR, on the creation and maintenance of large software artefact repositories. The most recent extensions are explicitly addressing the provision of cross-project global views of large software collections and historical views of individual artefacts within a collection. The long-term benefits of such support can only be realised if OSCAR and CoDEEDS are widely adopted and steps to facilitate this are described. This book continues to provide a forum, which a recent book, Software Evolution with UML and XML, started, where expert insights are presented on the subject. In that book, initial efforts were made to link together three current phenomena: software evolution, UML, and XML. In this book, focus will be on the practical side of linking them, that is, how UML and XML and their related methods/tools can assist software evolution in practice. Considering that nowadays software starts evolving before it is delivered, an apparent feature for software evolution is that it happens over all stages and over all aspects. Therefore, all possible techniques should be explored. This book explores techniques based on UML/XML and a combination of them with other techniques (i.e., over all techniques from theory to tools). Software evolution happens at all stages. Chapters in this book describe that software evolution issues present at stages of software architecturing, modeling/specifying, assessing, coding, validating, design recovering, program understanding, and reusing. Software evolution happens in all aspects. Chapters in this book illustrate that software evolution issues are involved in Web application, embedded system, software repository, component-based development, object model, development environment, software metrics, UML use case diagram, system model, Legacy system, safety critical system, user interface, software reuse, evolution management, and variability modeling. Software evolution needs to be facilitated with all possible techniques. Chapters in this book demonstrate techniques, such as formal methods, program transformation, empirical study, tool development, standardisation, visualisation, to control system changes to meet organisational and business objectives in a cost-effective way. On the journey of the grand challenge posed by software evolution, the journey that we have to make, the contributory authors of this book have already made further advances

    Distributed collaboration between industry and university partners in HE

    Get PDF
    Over the past three years the School of Design has been experimenting with an innovative curriculum design and delivery model named ‘the Global Studio’. The Global Studio is a cross-institutional research informed teaching and learning collaboration conducted between Northumbria University and international universities and industry partners based in the UK, USA, Netherlands and Korea. The aims of the Global Studio are directly linked with current and future industry needs that are related to changes in the organisation of product and service development. These changes highlight the importance of equipping design students with skills for working in globally networked organisations particularly the development of skills in intercultural communication and collaboration. In this paper we will focus on the Global Studio conducted in 2008 which included Northumbria University (UK), Hongik University (Korea), Auburn University (USA), Intel (USA), Motorola design studios located in the UK and Korea and Great Southern Wood (USA). These projects will be used to illustrate challenges and benefits of international collaborative industry-based projects undertaken in distributed settings

    Report of the user requirements and web based access for eResearch workshops

    Get PDF
    The User Requirements and Web Based Access for eResearch Workshop, organized jointly by NeSC and NCeSS, was held on 19 May 2006. The aim was to identify lessons learned from e-Science projects that would contribute to our capacity to make Grid infrastructures and tools usable and accessible for diverse user communities. Its focus was on providing an opportunity for a pragmatic discussion between e-Science end users and tool builders in order to understand usability challenges, technological options, community-specific content and needs, and methodologies for design and development. We invited members of six UK e-Science projects and one US project, trying as far as possible to pair a user and developer from each project in order to discuss their contrasting perspectives and experiences. Three breakout group sessions covered the topics of user-developer relations, commodification, and functionality. There was also extensive post-meeting discussion, summarized here. Additional information on the workshop, including the agenda, participant list, and talk slides, can be found online at http://www.nesc.ac.uk/esi/events/685/ Reference: NeSC report UKeS-2006-07 available from http://www.nesc.ac.uk/technical_papers/UKeS-2006-07.pd

    Boundary Objects and their Use in Agile Systems Engineering

    Full text link
    Agile methods are increasingly introduced in automotive companies in the attempt to become more efficient and flexible in the system development. The adoption of agile practices influences communication between stakeholders, but also makes companies rethink the management of artifacts and documentation like requirements, safety compliance documents, and architecture models. Practitioners aim to reduce irrelevant documentation, but face a lack of guidance to determine what artifacts are needed and how they should be managed. This paper presents artifacts, challenges, guidelines, and practices for the continuous management of systems engineering artifacts in automotive based on a theoretical and empirical understanding of the topic. In collaboration with 53 practitioners from six automotive companies, we conducted a design-science study involving interviews, a questionnaire, focus groups, and practical data analysis of a systems engineering tool. The guidelines suggest the distinction between artifacts that are shared among different actors in a company (boundary objects) and those that are used within a team (locally relevant artifacts). We propose an analysis approach to identify boundary objects and three practices to manage systems engineering artifacts in industry
    corecore