161,468 research outputs found

    Early aspects: aspect-oriented requirements engineering and architecture design

    Get PDF
    This paper reports on the third Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design Workshop, which has been held in Lancaster, UK, on March 21, 2004. The workshop included a presentation session and working sessions in which the particular topics on early aspects were discussed. The primary goal of the workshop was to focus on challenges to defining methodical software development processes for aspects from early on in the software life cycle and explore the potential of proposed methods and techniques to scale up to industrial applications

    Designinig Coordination among Human and Software Agents

    Get PDF
    The goal of this paper is to propose a new methodology for designing coordination between human angents and software agents and, ultimately, among software agents. The methodology is based on two key ideas. The first is that coordination should be designed in steps, according to a precise software engineering methodology, and starting from the specification of early requirements. The second is that coordination should be modeled as dependency between actors. Two actors may depend on one another because they want to achieve goals, acquire resources or execute a plan. The methodology used is based on Tropos, an agent oriented software engineering methodology presented in earlier papers. The methodology is presented with the help of a case study

    Towards a comprehensive agent-oriented software engineering methodology

    Get PDF
    Recently, agent systems have proven to be a powerful new approach for designing and developing complex and distributed software systems. The agent area is one of the most dynamic and exciting areas in computer science today, because of the agents ability to impact the lives and work of all of us. Developing multi-agent systems for complex and distributed systems entails a robust methodology to assist developers to develop such systems in appropriate way. In the last ten years, many of agent oriented methodologies have been proposed. Although, these methodologies are based on strong basis they still suffer from a set of shortcomings and they still have the problems of traditional distributed systems as well as the difficulties that arise from flexibility requirements and sophisticated interactions. This thesis proposed a new agent oriented software engineering methodology called: Multi-Agent System Development (MASD) for development of multi-agent systems. The new methodology is provided by a set of guidelines, methods, models, and techniques that facilitate a systematic software development process. The thesis makes the following contributions: The main contribution of this thesis is to build a new methodology for the development of multi-agent systems. It is based upon the previous existing methodologies. It is aimed to develop a complete life-cycle methodology for designing and developing MASs. The new methodology is considered as an attempt to solve some of the problems that existing methodologies suffer from. The new methodology is established based on three fundamental aspects: concepts, models, and process. These three aspects are considered as a foundation for building a solid methodology. The concepts are all the necessary MAS concepts that should be available in order to build the models of the new methodology in a correct manner. The models include modeling techniques, modeling languages, a diagramming notation, and tools that can be used to analysis and design the agent system. The process is a set of steps or phases describe how the new methodology works in detail. The new methodology is built to bridge the gap between design models and existing agent implementation languages. It provides refined design models that can be directly implemented in an available programming language or use a dedicated agent-oriented programming language which provides constructs to implement the high-level design concepts such as Jadex, JADE, JACK, etc. The MASD methodology also uses an important concept called triggers and relies heavily on agent roles. The role concept is considered one of the most important aspects that represent agent behaviour. The trigger concept is also considered as an important aspect that represents agent reactivity. The new methodology captures the social agent aspects by utilizing well-known techniques such as use case maps, which enable developers to identify social aspects from the problem specification. MASD methodology is developed based on the essential software engineering issues such as preciseness, accessibility, expressiveness, domain applicability, modularity, refinement, model derivation, traceability, and clear definitions. The MASD methodology is provided by a plain and understandable development process through the methodology phases. It captures the holistic view of the system components, and commutative aspects, which should be recognized before designing the methodology models. This is achieved by using well-known techniques such as UCMs and UML UCDs. The resulting methodology was obtained by performing several steps. First, a review study “literature review” of different agent methodologies is carried out to capture their strengths and weaknesses. This review study started with the conceptual framework for MAS to discuss the common terms and concepts that are used in the thesis. The aim is to establish the characteristics of agent-oriented methodologies, and see how these characteristics are suited to develop multi-agent systems. Secondly, a requirement for a novel methodology is presented. These requirements are discussed in detail based on the three categories: concepts, models, and process. Thirdly, the new mature methodology is developed based on existing methodologies. The MASD methodology is composed of four phases: the system requirement phase, analysis phase, design phase and implementation phase. The new methodology covers the whole life cycle of agent system development, from requirement analysis, architecture design, and detailed design to implementation. Fourthly, the methodology is illustrated by a case study on an agent-based car rental system. Finally, a framework for evaluating agent-oriented methodologies is performed. Four methodologies including MASD are evaluated and compared by performing a feature analysis. This is carried out by evaluating the strengths and weaknesses of each participating methodology using a proposed evaluation framework called the Multi-agent System Analysis and Design Framework (MASADF). The evaluation framework addresses several major aspects of agent-oriented methodologies, such as: concepts, models and process

    Organization of Multi-Agent Systems: An Overview

    Full text link
    In complex, open, and heterogeneous environments, agents must be able to reorganize towards the most appropriate organizations to adapt unpredictable environment changes within Multi-Agent Systems (MAS). Types of reorganization can be seen from two different levels. The individual agents level (micro-level) in which an agent changes its behaviors and interactions with other agents to adapt its local environment. And the organizational level (macro-level) in which the whole system changes it structure by adding or removing agents. This chapter is dedicated to overview different aspects of what is called MAS Organization including its motivations, paradigms, models, and techniques adopted for statically or dynamically organizing agents in MAS.Comment: 12 page

    Agent-oriented Modeling for Collaborative Learning Environments: A Peer-to-Peer Helpdesk Case Study

    Get PDF
    In this paper, we present the analysis and modelling of Help&Learn, an agent-based peer-to-peer helpdesk system to support extra-class interactions among students and teachers. Help&Learn expands the student’s possibility of solving problems, getting involved in a cooperative learning experience that transcends the limits of classrooms. To model Help&Learn, we have used Agent-Object-Relationship Modeling Language (AORML), an UML extension for agent-oriented information systems modeling. The aim of this research is two-fold. On one hand, we aim at modeling the variety of roles and the complexity of their interactions and activities within the Help&Learn system. On the other hand, we aim at showing the expressive power and the modeling strengths of AORML
    • …
    corecore