480,969 research outputs found

    High-pressure synthesis of rock salt LiMeO2-ZnO (Me = Fe3+, Ti3+) solid solutions

    Full text link
    Metastable LiMeO2-ZnO (Me = Fe3+, Ti3+) solid solutions with rock salt crystal structure have been synthesized by solid state reaction of ZnO with LiMeO2 complex oxides at 7.7 GPa and 1350-1450 K. Structure, phase composition, thermal stability and thermal expansion of the recovered samples have been studied by X-ray diffraction with synchrotron radiation. At ambient pressure rock salt LiMeO2-ZnO solid solutions are kinetically stable up to 670-800 K depending on the composition.Comment: 11 pages, 3 figures, 1 tabl

    Partial melting in an upwelling mantle column

    Get PDF
    Decompression melting of hot upwelling rock in the mantle creates a region of partial melt comprising a porous solid matrix through which magma rises buoyantly. Magma transport and the compensating matrix deformation are commonly described by two-phase compaction models, but melt production is less often incorporated. Melting is driven by the necessity to maintain thermodynamic equilibrium between mineral grains in the partial melt; the position and amount of partial melting that occur are thus thermodynamically determined. We present a consistent model for the ascent of a one-dimensional column of rock and provide solutions that reveal where and how much partial melting occurs, the positions of the boundaries of the partial melt being determined by conserving energy across them. Thermodynamic equilibrium of the boundary between partial melt and the solid lithosphere requires a boundary condition on the effective pressure (solid pressure minus melt pressure), which suggests that large effective stresses, and hence fracture, are likely to occur near the base of the lithosphere. Matrix compaction, melt separation and temperature in the partially molten region are all dependent on the effective pressure, a fact that can lead to interesting oscillatory boundary-layer structures. © 2008 The Royal Society

    High pressure synthesis of FeO-ZnO solid solutions with rock salt structure: in situ X-ray diffraction studies

    Full text link
    X-ray diffraction with synchrotron radiation has been used for the first time to study chemical interaction in the FeO-ZnO system at 4.8 GPa and temperatures up to 1300 K. Above 750 K, the chemical reaction between FeO and ZnO has been observed that resulted in the formation of rock salt (rs) Fe1-xZnxO solid solutions (0.3 \leq x \leq 0.85). The lattice parameters of these solid solutions have been in situ measured as a function of temperature under pressure, and corresponding thermal expansion coefficients have been calculated.Comment: 9 pages, 2 figures, 1 tabl

    Stress dependent thermal pressurization of a fluid-saturated rock

    Get PDF
    Temperature increase in saturated porous materials under undrained conditions leads to thermal pressurization of the pore fluid due to the discrepancy between the thermal expansion coefficients of the pore fluid and of the solid matrix. This increase in the pore fluid pressure induces a reduction of the effective mean stress and can lead to shear failure or hydraulic fracturing. The equations governing the phenomenon of thermal pressurization are presented and this phenomenon is studied experimentally for a saturated granular rock in an undrained heating test under constant isotropic stress. Careful analysis of the effect of mechanical and thermal deformation of the drainage and pressure measurement system is performed and a correction of the measured pore pressure is introduced. The test results are modelled using a non-linear thermo-poro-elastic constitutive model of the granular rock with emphasis on the stress-dependent character of the rock compressibility. The effects of stress and temperature on thermal pressurization observed in the tests are correctly reproduced by the model

    Second law of thermodynamics and the failure of rock materials

    Get PDF
    The relation of nonequilibrium thermodynamics to some failure and fracture theories of rock mechanics is investigated. The basic concepts are given to connect failure to the properties of material equations describing the elastic properties. The resulted in thermodynamic conditions are proved to be compatible with classical localization and failure theories of solid materials. Compatibility with experiments and some empirical, adhoc failure criteria of rocks is also demonstrated

    Effects of finite strains in fully coupled 3D geomechanical simulations

    Get PDF
    Numerical modeling of geomechanical phenomena and geo-engineering problems often involves complex issues related to several variables and corresponding coupling effects. Under certain circumstances, both soil and rock may experience a nonlinear material response caused by, for example, plastic, viscous, or damage behavior or even a nonlinear geometric response due to large deformations or displacements of the solid. Furthermore, the presence of one or more fluids (water, oil, gas, etc.) within the skeleton must be taken into account when evaluating the interaction between the different phases of the continuum body. A multiphase three-dimensional (3D) coupled model of finite strains, suitable for dealing with solid-displacement and fluid-diffusion problems, is described for assumed elastoplastic behavior of the solid phase. Particularly, a 3D mixed finite element was implemented to fulfill stability requirements of the adopted formulation, and a permeability tensor dependent on deformation is introduced. A consolidation scenario induced by silo filling was investigated, and the effects of the adoption of finite strains are discusse

    On The Possibility of Enrichment and Differentiation in Gas Giants During Birth by Disk Instability

    Full text link
    We investigate the coupling between rock-size solids and gas during the formation of gas giant planets by disk fragmentation in the outer regions of massive disks. In this study, we use three-dimensional radiative hydrodynamics simulations and model solids as a spatial distribution of particles. We assume that half of the total solid fraction is in small grains and half in large solids. The former are perfectly entrained with the gas and set the opacity in the disk, while the latter are allowed to respond to gas drag forces, with the back reaction on the gas taken into account. To explore the maximum effects of gas-solid interactions, we first consider 10cm-size particles. We then compare these results to a simulation with 1 km-size particles, which explores the low-drag regime. We show that (1) disk instability planets have the potential to form large cores due to aerodynamic capturing of rock-size solids in spiral arms before fragmentation; (2) that temporary clumps can concentrate tens of M⊕M_{\oplus} of solids in very localized regions before clump disruption; (3) that the formation of permanent clumps, even in the outer disk, is dependent on the grain-size distribution, i.e., the opacity; (4) that nonaxisymmetric structure in the disk can create disk regions that have a solids-to-gas ratio greater than unity; (5) that the solid distribution may affect the fragmentation process; (6) that proto-gas giants and proto-brown dwarfs can start as differentiated objects prior to the H2_2 collapse phase; (7) that spiral arms in a gravitationally unstable disk are able to stop the inward drift of rock-size solids, even redistributing them to larger radii; and, (8) that large solids can form spiral arms that are offset from the gaseous spiral arms. We conclude that planet embryo formation can be strongly affected by the growth of solids during the earliest stages of disk accretion.Comment: Accepted by ApJ. 55 pages including 24 figures. In response to comments from the referee, we have included a new simulation with km-size objects and have revised some discussions and interpretations. Major conclusions remain unchanged, and new conclusions have been added in response to the new ru

    Towards OWL-based Knowledge Representation in Petrology

    Full text link
    This paper presents our work on development of OWL-driven systems for formal representation and reasoning about terminological knowledge and facts in petrology. The long-term aim of our project is to provide solid foundations for a large-scale integration of various kinds of knowledge, including basic terms, rock classification algorithms, findings and reports. We describe three steps we have taken towards that goal here. First, we develop a semi-automated procedure for transforming a database of igneous rock samples to texts in a controlled natural language (CNL), and then a collection of OWL ontologies. Second, we create an OWL ontology of important petrology terms currently described in natural language thesauri. We describe a prototype of a tool for collecting definitions from domain experts. Third, we present an approach to formalization of current industrial standards for classification of rock samples, which requires linear equations in OWL 2. In conclusion, we discuss a range of opportunities arising from the use of semantic technologies in petrology and outline the future work in this area.Comment: 10 pages. The paper has been accepted by OWLED2011 as a long presentatio
    • …
    corecore