2,567 research outputs found

    HIRIS (High-Resolution Imaging Spectrometer: Science opportunities for the 1990s. Earth observing system. Volume 2C: Instrument panel report

    Get PDF
    The high-resolution imaging spectrometer (HIRIS) is an Earth Observing System (EOS) sensor developed for high spatial and spectral resolution. It can acquire more information in the 0.4 to 2.5 micrometer spectral region than any other sensor yet envisioned. Its capability for critical sampling at high spatial resolution makes it an ideal complement to the MODIS (moderate-resolution imaging spectrometer) and HMMR (high-resolution multifrequency microwave radiometer), lower resolution sensors designed for repetitive coverage. With HIRIS it is possible to observe transient processes in a multistage remote sensing strategy for Earth observations on a global scale. The objectives, science requirements, and current sensor design of the HIRIS are discussed along with the synergism of the sensor with other EOS instruments and data handling and processing requirements

    Proceedings of the Second Airborne Imaging Spectrometer Data Analysis Workshop

    Get PDF
    Topics addressed include: calibration, the atmosphere, data problems and techniques, geological research, and botanical and geobotanical research

    Multisensor Fusion Remote Sensing Technology For Assessing Multitemporal Responses In Ecohydrological Systems

    Get PDF
    Earth ecosystems and environment have been changing rapidly due to the advanced technologies and developments of humans. Impacts caused by human activities and developments are difficult to acquire for evaluations due to the rapid changes. Remote sensing (RS) technology has been implemented for environmental managements. A new and promising trend in remote sensing for environment is widely used to measure and monitor the earth environment and its changes. RS allows large-scaled measurements over a large region within a very short period of time. Continuous and repeatable measurements are the very indispensable features of RS. Soil moisture is a critical element in the hydrological cycle especially in a semiarid or arid region. Point measurement to comprehend the soil moisture distribution contiguously in a vast watershed is difficult because the soil moisture patterns might greatly vary temporally and spatially. Space-borne radar imaging satellites have been popular because they have the capability to exhibit all weather observations. Yet the estimation methods of soil moisture based on the active or passive satellite imageries remain uncertain. This study aims at presenting a systematic soil moisture estimation method for the Choke Canyon Reservoir Watershed (CCRW), a semiarid watershed with an area of over 14,200 km2 in south Texas. With the aid of five corner reflectors, the RADARSAT-1 Synthetic Aperture Radar (SAR) imageries of the study area acquired in April and September 2004 were processed by both radiometric and geometric calibrations at first. New soil moisture estimation models derived by genetic programming (GP) technique were then developed and applied to support the soil moisture distribution analysis. The GP-based nonlinear function derived in the evolutionary process uniquely links a series of crucial topographic and geographic features. Included in this process are slope, aspect, vegetation cover, and soil permeability to compliment the well-calibrated SAR data. Research indicates that the novel application of GP proved useful for generating a highly nonlinear structure in regression regime, which exhibits very strong correlations statistically between the model estimates and the ground truth measurements (volumetric water content) on the basis of the unseen data sets. In an effort to produce the soil moisture distributions over seasons, it eventually leads to characterizing local- to regional-scale soil moisture variability and performing the possible estimation of water storages of the terrestrial hydrosphere. A new evolutionary computational, supervised classification scheme (Riparian Classification Algorithm, RICAL) was developed and used to identify the change of riparian zones in a semi-arid watershed temporally and spatially. The case study uniquely demonstrates an effort to incorporating both vegetation index and soil moisture estimates based on Landsat 5 TM and RADARSAT-1 imageries while trying to improve the riparian classification in the Choke Canyon Reservoir Watershed (CCRW), South Texas. The CCRW was selected as the study area contributing to the reservoir, which is mostly agricultural and range land in a semi-arid coastal environment. This makes the change detection of riparian buffers significant due to their interception capability of non-point source impacts within the riparian buffer zones and the maintenance of ecosystem integrity region wide. The estimation of soil moisture based on RADARSAT-1 Synthetic Aperture Radar (SAR) satellite imagery as previously developed was used. Eight commonly used vegetation indices were calculated from the reflectance obtained from Landsat 5 TM satellite images. The vegetation indices were individually used to classify vegetation cover in association with genetic programming algorithm. The soil moisture and vegetation indices were integrated into Landsat TM images based on a pre-pixel channel approach for riparian classification. Two different classification algorithms were used including genetic programming, and a combination of ISODATA and maximum likelihood supervised classification. The white box feature of genetic programming revealed the comparative advantage of all input parameters. The GP algorithm yielded more than 90% accuracy, based on unseen ground data, using vegetation index and Landsat reflectance band 1, 2, 3, and 4. The detection of changes in the buffer zone was proved to be technically feasible with high accuracy. Overall, the development of the RICAL algorithm may lead to the formulation of more effective management strategies for the handling of non-point source pollution control, bird habitat monitoring, and grazing and live stock management in the future. Soil properties, landscapes, channels, fault lines, erosion/deposition patches, and bedload transport history show geologic and geomorphologic features in a variety of watersheds. In response to these unique watershed characteristics, the hydrology of large-scale watersheds is often very complex. Precipitation, infiltration and percolation, stream flow, plant transpiration, soil moisture changes, and groundwater recharge are intimately related with each other to form water balance dynamics on the surface of these watersheds. Within this chapter, depicted is an optimal site selection technology using a grey integer programming (GIP) model to assimilate remote sensing-based geo-environmental patterns in an uncertain environment with respect to some technical and resources constraints. It enables us to retrieve the hydrological trends and pinpoint the most critical locations for the deployment of monitoring stations in a vast watershed. Geo-environmental information amassed in this study includes soil permeability, surface temperature, soil moisture, precipitation, leaf area index (LAI) and normalized difference vegetation index (NDVI). With the aid of a remote sensing-based GIP analysis, only five locations out of more than 800 candidate sites were selected by the spatial analysis, and then confirmed by a field investigation. The methodology developed in this remote sensing-based GIP analysis will significantly advance the state-of-the-art technology in optimum arrangement/distribution of water sensor platforms for maximum sensing coverage and information-extraction capacity. Effective water resources management is a critically important priority across the globe. While water scarcity limits the uses of water in many ways, floods also have caused so many damages and lives. To more efficiently use the limited amount of water or to resourcefully provide adequate time for flood warning, the results have led us to seek advanced techniques for improving streamflow forecasting. The objective of this section of research is to incorporate sea surface temperature (SST), Next Generation Radar (NEXRAD) and meteorological characteristics with historical stream data to forecast the actual streamflow using genetic programming. This study case concerns the forecasting of stream discharge of a complex-terrain, semi-arid watershed. This study elicits microclimatological factors and the resultant stream flow rate in river system given the influence of dynamic basin features such as soil moisture, soil temperature, ambient relative humidity, air temperature, sea surface temperature, and precipitation. Evaluations of the forecasting results are expressed in terms of the percentage error (PE), the root-mean-square error (RMSE), and the square of the Pearson product moment correlation coefficient (r-squared value). The developed models can predict streamflow with very good accuracy with an r-square of 0.84 and PE of 1% for a 30-day prediction

    MODIS: Moderate-resolution imaging spectrometer. Earth observing system, volume 2B

    Get PDF
    The Moderate-Resolution Imaging Spectrometer (MODIS), as presently conceived, is a system of two imaging spectroradiometer components designed for the widest possible applicability to research tasks that require long-term (5 to 10 years), low-resolution (52 channels between 0.4 and 12.0 micrometers) data sets. The system described is preliminary and subject to scientific and technological review and modification, and it is anticipated that both will occur prior to selection of a final system configuration; however, the basic concept outlined is likely to remain unchanged

    Analysis of information systems for hydropower operations

    Get PDF
    The operations of hydropower systems were analyzed with emphasis on water resource management, to determine how aerospace derived information system technologies can increase energy output. Better utilization of water resources was sought through improved reservoir inflow forecasting based on use of hydrometeorologic information systems with new or improved sensors, satellite data relay systems, and use of advanced scheduling techniques for water release. Specific mechanisms for increased energy output were determined, principally the use of more timely and accurate short term (0-7 days) inflow information to reduce spillage caused by unanticipated dynamic high inflow events. The hydrometeorologic models used in predicting inflows were examined to determine the sensitivity of inflow prediction accuracy to the many variables employed in the models, and the results used to establish information system requirements. Sensor and data handling system capabilities were reviewed and compared to the requirements, and an improved information system concept outlined

    Shuttle imaging radar-C science plan

    Get PDF
    The Shuttle Imaging Radar-C (SIR-C) mission will yield new and advanced scientific studies of the Earth. SIR-C will be the first instrument to simultaneously acquire images at L-band and C-band with HH, VV, HV, or VH polarizations, as well as images of the phase difference between HH and VV polarizations. These data will be digitally encoded and recorded using onboard high-density digital tape recorders and will later be digitally processed into images using the JPL Advanced Digital SAR Processor. SIR-C geologic studies include cold-region geomorphology, fluvial geomorphology, rock weathering and erosional processes, tectonics and geologic boundaries, geobotany, and radar stereogrammetry. Hydrology investigations cover arid, humid, wetland, snow-covered, and high-latitude regions. Additionally, SIR-C will provide the data to identify and map vegetation types, interpret landscape patterns and processes, assess the biophysical properties of plant canopies, and determine the degree of radar penetration of plant canopies. In oceanography, SIR-C will provide the information necessary to: forecast ocean directional wave spectra; better understand internal wave-current interactions; study the relationship of ocean-bottom features to surface expressions and the correlation of wind signatures to radar backscatter; and detect current-system boundaries, oceanic fronts, and mesoscale eddies. And, as the first spaceborne SAR with multi-frequency, multipolarization imaging capabilities, whole new areas of glaciology will be opened for study when SIR-C is flown in a polar orbit

    Amélioration de la caractérisation de la neige et du sol arctique afin d’améliorer la prédiction de l’équivalent en eau de la neige en télédétection micro-ondes

    Get PDF
    Le phénomène de l’amplification arctique consiste en une augmentation plus prononcée des températures de surface dans cette région que sur le reste du globe. Ce phénomène est notamment dû à la diminution marquée du couvert nival provoquant un déséquilibre dans le bilan d’énergie de surface via une réduction généralisée de l’albédo (rétroaction positive). L’accélération du réchauffement est jusqu’à trois fois plus élevée dans ces régions. Il est donc primordial, dans un contexte de changement climatique arctique, de poursuivre et d’améliorer le suivi à grande échelle du couvert nival afin de mieux comprendre les processus gouvernant la variabilité spatio-temporelle du manteau neigeux. Plus spécifiquement, l’Équivalent en Eau de la Neige (EEN) est généralement utilisé pour quantifier deux propriétés (hauteur et densité) de la neige. Son estimation à grande échelle dans les régions éloignées tel que l’Arctique provient actuellement essentiellement de produits en micro-ondes passives satellitaires. Cependant, il existe encore beaucoup d’incertitudes sur les techniques d’assimilation de l’ÉEN par satellite et ce projet vise une réduction de l’erreur liée à l’estimation de l’ÉEN en explorant deux des principales sources de biais tels que : 1) la variabilité spatiale de l’épaisseur et des différentes couches du manteau neigeux arctique liées à la topographie et la végétation au sol influençant l’estimation de l’ÉEN; et 2) les modèles de transfert radiatif micro-ondes de la neige et du sol ne bénéficient pas actuellement d’une bonne paramétrisation en conditions arctiques, là où les erreurs liées à l’assimilation de l’ÉEN sont les plus importantes. L’objectif global est donc d’analyser les propriétés géophysiques du couvert nival en utilisant des outils de télédétection et de modélisation pour diminuer l’erreur liée à la variabilité spatiale locale dans l’estimation du ÉEN à grande échelle, tout en améliorant la compréhension des processus locaux qui affectent cette variabilité. Premièrement, une analyse haute résolution à l’aide de l’algorithme Random Forest a permis de prédire la hauteur de neige à une résolution spatiale de 10 m avec une RMSE de 8 cm (23%) et d’en apprendre davantage sur les processus de distribution de la neige en Arctique. Deuxièmement, la variabilité du manteaux neigeux arctique (hauteur et microstructure) a été incorporée dans des simulations en transfert radiatif micro-ondes de la neige et comparée au capteur satellitaire SSMIS. L’ajout de variabilité améliore la RMSE des simulations de 8K par rapport à un manteau neigeux uniforme. Finalement, une paramétrisation du sol gelé est présentée à l’aide de mesures de rugosité provenant de photogrammétrie (Structure-from-Motion). Cela a permis d’investiguer trois modèles de réflectivité micro-ondes du sol ainsi que la permittivité effective du sol gelé avec une rugosité SfM d’une précision de 0.1 mm. Ces données de rugosité SfM avec une permittivité optimisée (ε'_19 = 3.3, ε'_37 = 3.6) réduisent significativement l’erreur des températures de brillance simulées par rapport à des mesures au sols (RMSE = 3.1K, R^2 = 0.71) pour toutes les fréquences et polarisations. Cette thèse offre une caractérisation des variables de surface (neige et sol) en Arctique en transfert radiatif micro-ondes qui bénéficie aux multiples modélisations (climatiques et hydrologiques) de la cryosphère
    • …
    corecore