224 research outputs found

    Survey of dynamic scheduling in manufacturing systems

    Get PDF

    Satisfying flexible due dates in fuzzy job shop by means of hybrid evolutionary algorithms

    Get PDF
    This paper tackles the job shop scheduling problem with fuzzy sets modelling uncertain durations and flexible due dates. The objective is to achieve high-service level by maximising due-date satisfaction, considering two different overall satisfaction measures as objective functions. We show how these functions model different attitudes in the framework of fuzzy multicriteria decision making and we define a measure of solution robustness based on an existing a-posteriori semantics of fuzzy schedules to further assess the quality of the obtained solutions. As solving method, we improve a memetic algorithm from the literature by incorporating a new heuristic mechanism to guide the search through plateaus of the fitness landscape. We assess the performance of the resulting algorithm with an extensive experimental study, including a parametric analysis, and a study of the algorithm’s components and synergy between them. We provide results on a set of existing and new benchmark instances for fuzzy job shop with flexible due dates that show the competitiveness of our method.This research has been supported by the Spanish Government under research grant TIN2016-79190-R

    Evolutionary fleet sizing in static and uncertain environments with shuttle transportation tasks - the case studies of container terminals

    Get PDF
    This paper aims to identify the optimal number of vehicles in environments with shuttle transportation tasks. These environments are very common industrial settings where goods are transferred repeatedly between multiple machines by a fleet of vehicles. Typical examples of such environments are manufacturing factories, warehouses and container ports. One very important optimisation problem in these environments is the fleet sizing problem. In real-world settings, this problem is highly complex and the optimal fleet size depends on many factors such as uncertainty in travel time of vehicles, the processing time of machines and size of the buffer of goods next to machines. These factors, however, have not been fully considered previously, leaving an important gap in the current research. This paper attempts to close this gap by taking into account the aforementioned factors. An evolutionary algorithm was proposed to solve this problem under static and uncertain situations. Two container ports were selected as case studies for this research. For the static cases, the state-of-the-art CPLEX solver was considered as the benchmark. Comparison results on real-world scenarios show that in the majority of cases the proposed algorithm outperforms CPLEX in terms of solvability and processing time. For the uncertain cases, a high-fidelity simulation model was considered as the benchmark. Comparison results on real-world scenarios with uncertainty show that in most cases the proposed algorithm could provide an accurate robust fleet size. These results also show that uncertainty can have a significant impact on the optimal fleet size

    Swarm lexicographic goal programming for fuzzy open shop scheduling

    Get PDF
    In this work we consider a multiobjective open shop scheduling problem with uncertain processing times and flexible due dates, both modelled using fuzzy sets. We adopt a goal programming model based on lexicographic multiobjective optimisation of both makespan and due-date satisfaction and propose a particle swarm algorithm to solve the resulting problem. We present experimental results which show that this multiobjective approach achieves as good results as single-objective algorithms for the objective with the highest priority, while greatly improving on the second objectiv

    A review and classification of heuristics for permutation flow-shop scheduling with makespan objective

    Get PDF
    Makespan minimization in permutation flow-shop scheduling is an operations research topic that has been intensively addressed during the last 40 years. Since the problem is known to be NP-hard for more than two machines, most of the research effort has been devoted to the development of heuristic procedures in order to provide good approximate solutions to the problem. However, little attention has been devoted to establish a common framework for these heuristics so that they can be effectively combined or extended. In this paper, we review and classify the main contributions regarding this topic and discuss future research issues.Ministerio de Ciencia y TecnologĂ­a DPI-2001-311

    A real-time simulation-based optimisation environment for industrial scheduling

    Get PDF
    n order to cope with the challenges in industry today, such as changes in product diversity and production volume, manufacturing companies are forced to react more flexibly and swiftly. Furthermore, in order for them to survive in an ever-changing market, they also need to be highly competitive by achieving near optimal efficiency in their operations. Production scheduling is vital to the success of manufacturing systems in industry today, because the near optimal allocation of resources is essential in remaining highly competitive. The overall aim of this study is the advancement of research in manufacturing scheduling through the exploration of more effective approaches to address complex, real-world manufacturing flow shop problems. The methodology used in the thesis is in essence a combination of systems engineering, algorithmic design and empirical experiments using real-world scenarios and data. Particularly, it proposes a new, web services-based, industrial scheduling system framework, called OPTIMISE Scheduling System (OSS), for solving real-world complex scheduling problems. OSS, as implemented on top of a generic web services-based simulation-based optimisation (SBO) platform called OPTIMISE, can support near optimal and real-time production scheduling in a distributed and parallel computing environment. Discrete-event simulation (DES) is used to represent and flexibly cope with complex scheduling problems without making unrealistic assumptions which are the major limitations of existing scheduling methods proposed in the literature. At the same time, the research has gone beyond existing studies of simulation-based scheduling applications, because the OSS has been implemented in a real-world industrial environment at an automotive manufacturer, so that qualitative evaluations and quantitative comparisons of scheduling methods and algorithms can be made with the same framework. Furthermore, in order to be able to adapt to and handle many different types of real-world scheduling problems, a new hybrid meta-heuristic scheduling algorithm that combines priority dispatching rules and genetic encoding is proposed. This combination is demonstrated to be able to handle a wider range of problems or a current scheduling problem that may change over time, due to the flexibility requirements in the real-world. The novel hybrid genetic representation has been demonstrated effective through the evaluation in the real-world scheduling problem using real-world data
    • …
    corecore