770 research outputs found

    Examination of the Effects of Heterogeneous Organization of RyR Clusters, Myofibrils and Mitochondria on Ca2+ Release Patterns in Cardiomyocytes

    Get PDF
    Spatio-temporal dynamics of intracellular calcium, [Ca2+]i, regulate the contractile function of cardiac muscle cells. Measuring [Ca2+]i flux is central to the study of mechanisms that underlie both normal cardiac function and calcium-dependent etiologies in heart disease. However, current imaging techniques are limited in the spatial resolution to which changes in [Ca2+]i can be detected. Using spatial point process statistics techniques we developed a novel method to simulate the spatial distribution of RyR clusters, which act as the major mediators of contractile Ca2+ release, upon a physiologically-realistic cellular landscape composed of tightly-packed mitochondria and myofibrils.We applied this method to computationally combine confocal-scale (~ 200 nm) data of RyR clusters with 3D electron microscopy data (~ 30 nm) of myofibrils and mitochondria, both collected from adult rat left ventricular myocytes. Using this hybrid-scale spatial model, we simulated reaction-diffusion of [Ca2+]i during the rising phase of the transient (first 30 ms after initiation). At 30 ms, the average peak of the simulated [Ca2+]i transient and of the simulated fluorescence intensity signal, F/F0, reached values similar to that found in the literature ([Ca2+]i 1 ÎŒM; F/F0 5.5). However, our model predicted the variation in [Ca2+]i to be between 0.3 and 12.7 ÎŒM (~3 to 100 fold from resting value of 0.1 ÎŒM) and the corresponding F/F0 signal ranging from 3 to 9.5. We demonstrate in this study that: (i) heterogeneities in the [Ca2+]i transient are due not only to heterogeneous distribution and clustering of mitochondria; (ii) but also to heterogeneous local densities of RyR clusters. Further, we show that: (iii) these structureinduced heterogeneities in [Ca2+]i can appear in line scan data. Finally, using our unique method for generating RyR cluster distributions, we demonstrate the robustness in the [Ca2+]i transient to differences in RyR cluster distributions measured between rat and human cardiomyocytes

    Quantitative neuroanatomy for connectomics in Drosophila

    Get PDF
    Neuronal circuit mapping using electron microscopy demands laborious proofreading or reconciliation of multiple independent reconstructions. Here, we describe new methods to apply quantitative arbor and network context to iteratively proofread and reconstruct circuits and create anatomically enriched wiring diagrams. We measured the morphological underpinnings of connectivity in new and existing reconstructions of Drosophila sensorimotor (larva) and visual (adult) systems. Synaptic inputs were preferentially located on numerous small, microtubule-free 'twigs' which branch off a single microtubule-containing 'backbone'. Omission of individual twigs accounted for 96% of errors. However, the synapses of highly connected neurons were distributed across multiple twigs. Thus, the robustness of a strong connection to detailed twig anatomy was associated with robustness to reconstruction error. By comparing iterative reconstruction to the consensus of multiple reconstructions, we show that our method overcomes the need for redundant effort through the discovery and application of relationships between cellular neuroanatomy and synaptic connectivity.Publisher PDFPeer reviewe

    Quantitative neuroanatomy for connectomics in Drosophila.

    Get PDF
    Neuronal circuit mapping using electron microscopy demands laborious proofreading or reconciliation of multiple independent reconstructions. Here, we describe new methods to apply quantitative arbor and network context to iteratively proofread and reconstruct circuits and create anatomically enriched wiring diagrams. We measured the morphological underpinnings of connectivity in new and existing reconstructions of Drosophila sensorimotor (larva) and visual (adult) systems. Synaptic inputs were preferentially located on numerous small, microtubule-free 'twigs' which branch off a single microtubule-containing 'backbone'. Omission of individual twigs accounted for 96% of errors. However, the synapses of highly connected neurons were distributed across multiple twigs. Thus, the robustness of a strong connection to detailed twig anatomy was associated with robustness to reconstruction error. By comparing iterative reconstruction to the consensus of multiple reconstructions, we show that our method overcomes the need for redundant effort through the discovery and application of relationships between cellular neuroanatomy and synaptic connectivity.Funding came from the HHMI Janelia Visiting Scientist program (AC), Swiss National Science Foundation grant 31003A 132969 (AC), HHMI, and the Institute of Neuroinformatics of the University of Zurich and ETH Zurich.This is the final version of the article. It first appeared from eLife via http://dx.doi.org/10.7554/eLife.12059.00

    The compositional and evolutionary logic of metabolism

    Full text link
    Metabolism displays striking and robust regularities in the forms of modularity and hierarchy, whose composition may be compactly described. This renders metabolic architecture comprehensible as a system, and suggests the order in which layers of that system emerged. Metabolism also serves as the foundation in other hierarchies, at least up to cellular integration including bioenergetics and molecular replication, and trophic ecology. The recapitulation of patterns first seen in metabolism, in these higher levels, suggests metabolism as a source of causation or constraint on many forms of organization in the biosphere. We identify as modules widely reused subsets of chemicals, reactions, or functions, each with a conserved internal structure. At the small molecule substrate level, module boundaries are generally associated with the most complex reaction mechanisms and the most conserved enzymes. Cofactors form a structurally and functionally distinctive control layer over the small-molecule substrate. Complex cofactors are often used at module boundaries of the substrate level, while simpler ones participate in widely used reactions. Cofactor functions thus act as "keys" that incorporate classes of organic reactions within biochemistry. The same modules that organize the compositional diversity of metabolism are argued to have governed long-term evolution. Early evolution of core metabolism, especially carbon-fixation, appears to have required few innovations among a small number of conserved modules, to produce adaptations to simple biogeochemical changes of environment. We demonstrate these features of metabolism at several levels of hierarchy, beginning with the small-molecule substrate and network architecture, continuing with cofactors and key conserved reactions, and culminating in the aggregation of multiple diverse physical and biochemical processes in cells.Comment: 56 pages, 28 figure

    Computational approaches to complex biological networks

    Get PDF
    The need of understanding and modeling the biological networks is one of the raisons d'\ueatre and of the driving forces behind the emergence of Systems Biology. Because of its holistic approach and because of the widely different level of complexity of the networks, different mathematical methods have been developed during the years. Some of these computational methods are used in this thesis in order to investigate various properties of different biological systems. The first part deals with the prediction of the perturbation of cellular metabolism induced by drugs. Using Flux Balance Analysis to describe the reconstructed genome-wide metabolic networks, we consider the problem of identifying the most selective drug synergisms for given therapeutic targets. The second part of this thesis considers gene regulatory and large social networks as signed graphs (activation/deactivation or friendship/hostility are rephrased as positive/negative coupling between spins). Using the analogy with an Ising spin glass an analysis of the energy landscape and of the content of \u201cdisorder\u201d 'is carried out. Finally, the last part concerns the study of the spatial heterogeneity of the signaling pathway of rod photoreceptors. The electrophysiological data produced by our collaborators in the Neurobiology laboratory have been analyzed with various dynamical systems giving an insight into the process of ageing of photoreceptors and into the role diffusion in the pathway

    Characterization of chloroplast and mitochondrial genomes from green algae belonging to the class ulvophyceae, and identification of this class position within the chlorophyta lineage

    Get PDF
    Les algues vertes sont divisées en cInq classes: Charophyceae, Prasinophyceae, Ulvophyceae, Trebouxiophyceae et Chlorophyceae. Afin de résoudre le positionnement phylogénétique de la classe Ulvophyceae au sein des ces multiples lignées et d'acquérir de l' information sur les tendances évolutives de 'ses génomes d'organites, j ' ai séquencé les ADN chloroplastiques (ADN cp) et ADN mitochondriaux (ADNmt) des ulvophytes basales Pseudendoclonium akinetum et Oltmannsiellopsis viridis, effectué des analyses génomiques comparatives détaillées d'ADNcp et ADNmt de chlorophytes, et réalisé des analyses phylogénétiques approfondies dérivées de ces organites. Les analyses comparatives de génomes d'organites ont révélé que leur architecture est trÚs fluide chez les Chlorophyta et démontre une grande variabilité de structure, d' ordre génique, de contenu génique, intronique et en éléments répétés, et ont également fourni des évidences indiscutables du transfert intracellulaire, interorganite d'éléments génétiques dans les cellules d'ulvophytes. De plus, les analyses phylogénétiques des données structurales et moléculaires dérivées de ces organites supportent fortement l'affiliation entre Ulvophyceae et Chlorophyceae

    A scenario of mitochondrial genome evolution in maize based on rearrangement events

    Get PDF
    Background: Despite their monophyletic origin, animal and plant mitochondrial genomes have been described as exhibiting different modes of evolution. Indeed, plant mitochondrial genomes feature a larger size, a lower mutation rate and more rearrangements than their animal counterparts. Gene order variation in animal mitochondrial genomes is often described as being due to translocation and inversion events, but tandem duplication followed by loss has also been proposed as an alternative process. In plant mitochondrial genomes, at the species level, gene shuffling and duplicate occurrence are such that no clear phylogeny has ever been identified, when considering genome structure variation. Results: In this study we analyzed the whole sequences of eight mitochondrial genomes from maize and teosintes in order to comprehend the events that led to their structural features, i.e. the order of genes, tRNAs, rRNAs, ORFs, pseudogenes and non-coding sequences shared by all mitogenomes and duplicate occurrences. We suggest a tandem duplication model similar to the one described in animals, except that some duplicates can remain. Thi

    Modelling evolution of genome size in prokaryotes in response to changes in their abiotic environment

    Get PDF
    The size of the genomes of known free-living prokaryotes varies from ïżœ 1:3 Mbp to ïżœ 13 Mbp. This thesis proposes a possible explanation of this variation due to variability of the physical conditions of the environment. In a stable environment, competition for the resource becomes the main force of selection and smaller (thus cheaper) genomes are favoured. In more variable conditions larger genomes will be preferred, as they have a wider range of response to a less predictable environment. An agent-based model (ABM) of genome evolution in an free-living prokaryotic population has been proposed. Using the classic Hutchinson niche space model, a gene was defined as a Gaussian function over a corresponding niche dimension. The cell can have more than one gene along a given dimension, and the envelope of all the corresponding responses is considered a full description of a cell’s phenotype over that dimension. Gene deletion, gene duplication, and modifying mutations are permitted during reproduction, so the number of genes and their phenotypic effect (height and position of the Gaussian envelope) are free to evolve. The surface under the curve is fixed to prevent ‘supergenes’ from occurring. Change of the environmental conditions is simulated as a bounded random walk with a varying length of the step (a parameter representing variability of the environment). Using this approach, the model is able to reproduce the phenomenon of genome streamlining in more stable environments (analogical to e.g. oligotrophic gyre regions of the ocean) and genome complexification in variable environments. Horizontal gene transfer (HGT) was also introduced, but was found to act in a similar manner as gene duplication and shown no important contribution to the speed of evolution and the adaptive potential of the population

    Collective behavior and self-organization in neural rosette morphogenesis

    Get PDF
    Neural rosettes develop from the self-organization of differentiating human pluripotent stem cells. This process mimics the emergence of the embryonic central nervous system primordium, i.e., the neural tube, whose formation is under close investigation as errors during such process result in severe diseases like spina bifida and anencephaly. While neural tube formation is recognized as an example of self-organization, we still do not understand the fundamental mechanisms guiding the process. Here, we discuss the different theoretical frameworks that have been proposed to explain self-organization in morphogenesis. We show that an explanation based exclusively on stem cell differentiation cannot describe the emergence of spatial organization, and an explanation based on patterning models cannot explain how different groups of cells can collectively migrate and produce the mechanical transformations required to generate the neural tube. We conclude that neural rosette development is a relevant experimental 2D in-vitro model of morphogenesis because it is a multi-scale self-organization process that involves both cell differentiation and tissue development. Ultimately, to understand rosette formation, we first need to fully understand the complex interplay between growth, migration, cytoarchitecture organization, and cell type evolution
    • 

    corecore