5,761 research outputs found

    Very-Large-Scale-Integration Circuit Techniques in Internet-of-Things Applications

    Get PDF
    Heading towards the era of Internet-of-things (IoT) means both opportunity and challenge for the circuit-design community. In a system where billions of devices are equipped with the ability to sense, compute, communicate with each other and perform tasks in a coordinated manner, security and power management are among the most critical challenges. Physically unclonable function (PUF) emerges as an important security primitive in hardware-security applications; it provides an object-specific physical identifier hidden within the intrinsic device variations, which is hard to expose and reproduce by adversaries. Yet, designing a compact PUF robust to noise, temperature and voltage remains a challenge. This thesis presents a novel PUF design approach based on a pair of ultra-compact analog circuits whose output is proportional to absolute temperature. The proposed approach is demonstrated through two works: (1) an ultra-compact and robust PUF based on voltage-compensated proportional-to-absolute-temperature voltage generators that occupies 8.3× less area than the previous work with the similar robustness and twice the robustness of the previously most compact PUF design and (2) a technique to transform a 6T-SRAM array into a robust analog PUF with minimal overhead. In this work, similar circuit topology is used to transform a preexisting on-chip SRAM into a PUF, which further reduces the area in (1) with no robustness penalty. In this thesis, we also explore techniques for power management circuit design. Energy harvesting is an essential functionality in an IoT sensor node, where battery replacement is cost-prohibitive or impractical. Yet, existing energy-harvesting power management units (EH PMU) suffer from efficiency loss in the two-step voltage conversion: harvester-to-battery and battery-to-load. We propose an EH PMU architecture with hybrid energy storage, where a capacitor is introduced in addition to the battery to serve as an intermediate energy buffer to minimize the battery involvement in the system energy flow. Test-case measurements show as much as a 2.2× improvement in the end-to-end energy efficiency. In contrast, with the drastically reduced power consumption of IoT nodes that operates in the sub-threshold regime, adaptive dynamic voltage scaling (DVS) for supply-voltage margin removal, fully on-chip integration and high power conversion efficiency (PCE) are required in PMU designs. We present a PMU–load co-design based on a fully integrated switched-capacitor DC-DC converter (SC-DC) and hybrid error/replica-based regulation for a fully digital PMU control. The PMU is integrated with a neural spike processor (NSP) that achieves a record-low power consumption of 0.61 µW for 96 channels. A tunable replica circuit is added to assist the error regulation and prevent loss of regulation. With automatic energy-robustness co-optimization, the PMU can set the SC-DC’s optimal conversion ratio and switching frequency. The PMU achieves a PCE of 77.7% (72.2%) at VIN = 0.6 V (1 V) and at the NSP’s margin-free operating point

    On-chip Monitoring: A Light-Weight Interconnection Network Approach

    Full text link
    Current nanometer technologies are subjected to several adverse effects that seriously impact the yield and performance of integrated circuits. Such is the case of within-die parameters uncertainties, varying workload conditions, aging, temperature, etc. Monitoring, calibration and dynamic adaptation have appeared as promising solutions to these issues and many kinds of monitors have been presented recently. In this scenario, where systems with hundreds of monitors of different types have been proposed, the need for light-weight monitoring networks has become essential. In this work we present a light-weight network architecture based on digitization resource sharing of nodes that require a time-to-digital conversion. Our proposal employs a single wire interface, shared among all the nodes in the network, and quantizes the time domain to perform the access multiplexing and transmit the information. It supposes a 16% improvement in area and power consumption compared to traditional approaches

    Development and characterisation of a novel LDMOS macro-model for smart power applications

    Get PDF

    A Monitoring Infrastructure for FPGA Self-Awareness and Dynamic Adaptation

    Full text link
    Variabilities associated with CMOS evolution affect the yield and performance of current digital designs. FPGAs, which are widely used for fast prototyping and implementation of digital circuits, also suffer from these issues. Proactive approaches start to appear to achieve self-awareness and dynamic adaptation of these devices. To support these techniques we propose the employment of a multi-purpose sensor network. This infrastructure, through adequate use of configuration and automation tools, is able to obtain relevant data along the life cycle of an FPGA. This is realised at a very reduced cost, not only in terms of area or other limited resources, but also regarding the design effort required to define and deploy the measuring infrastructure. Our proposal has been validated by measuring inter-die and intra-die variability in different FPGA families

    Drift Correction Methods for gas Chemical Sensors in Artificial Olfaction Systems: Techniques and Challenges

    Get PDF
    In this chapter the authors introduce the main challenges faced when developing drift correction techniques and will propose a deep overview of state-of-the-art methodologies that have been proposed in the scientific literature trying to underlying pros and cons of these techniques and focusing on challenges still open and waiting for solution

    A design concept for radiation hardened RADFET readout system for space applications

    Get PDF
    Instruments for measuring the absorbed dose and dose rate under radiation exposure, known as radiation dosimeters, are indispensable in space missions. They are composed of radiation sensors that generate current or voltage response when exposed to ionizing radiation, and processing electronics for computing the absorbed dose and dose rate. Among a wide range of existing radiation sensors, the Radiation Sensitive Field Effect Transistors (RADFETs) have unique advantages for absorbed dose measurement, and a proven record of successful exploitation in space missions. It has been shown that the RADFETs may be also used for the dose rate monitoring. In that regard, we propose a unique design concept that supports the simultaneous operation of a single RADFET as absorbed dose and dose rate monitor. This enables to reduce the cost of implementation, since the need for other types of radiation sensors can be minimized or eliminated. For processing the RADFET's response we propose a readout system composed of analog signal conditioner (ASC) and a self-adaptive multiprocessing system-on-chip (MPSoC). The soft error rate of MPSoC is monitored in real time with embedded sensors, allowing the autonomous switching between three operating modes (high-performance, de-stress and fault-tolerant), according to the application requirements and radiation conditions

    Design Issues and Challenges of File Systems for Flash Memories

    Get PDF
    This chapter discusses how to properly address the issues of using NAND flash memories as mass-memory devices from the native file system standpoint. We hope that the ideas and the solutions proposed in this chapter will be a valuable starting point for designers of NAND flash-based mass-memory devices
    corecore