23,618 research outputs found

    Application of artificial neural networks to weighted interval Kalman filtering

    Get PDF
    The interval Kalman filter is a variant of the traditional Kalman filter for systems with bounded parametric uncertainty. For such systems, modelled in terms of intervals, the interval Kalman filter provides estimates of the system state also in the form of intervals, guaranteed to contain the Kalman filter estimates of all point-valued systems contained in the interval model. However, for practical purposes, a single, point-valued estimate of the system state is often required. This point value can be seen as a weighted average of the interval bounds provided by the interval Kalman filter. This article proposes a methodology based on the application of artificial neural networks by which an adequate weight can be computed at each time step, whereby the weighted average of the interval bounds approximates the optimal estimate or estimate which would be obtained using a Kalman filter if no parametric uncertainty was present in the system model, even when this is not the case. The practical applicability and robustness of the method are demonstrated through its application to the navigation of an uninhabited surface vehicle. © IMechE 2014

    Lower Bounds on Exponential Moments of the Quadratic Error in Parameter Estimation

    Full text link
    Considering the problem of risk-sensitive parameter estimation, we propose a fairly wide family of lower bounds on the exponential moments of the quadratic error, both in the Bayesian and the non--Bayesian regime. This family of bounds, which is based on a change of measures, offers considerable freedom in the choice of the reference measure, and our efforts are devoted to explore this freedom to a certain extent. Our focus is mostly on signal models that are relevant to communication problems, namely, models of a parameter-dependent signal (modulated signal) corrupted by additive white Gaussian noise, but the methodology proposed is also applicable to other types of parametric families, such as models of linear systems driven by random input signals (white noise, in most cases), and others. In addition to the well known motivations of the risk-sensitive cost function (i.e., the exponential quadratic cost function), which is most notably, the robustness to model uncertainty, we also view this cost function as a tool for studying fundamental limits concerning the tail behavior of the estimation error. Another interesting aspect, that we demonstrate in a certain parametric model, is that the risk-sensitive cost function may be subjected to phase transitions, owing to some analogies with statistical mechanics.Comment: 28 pages; 4 figures; submitted for publicatio

    Robust Stability Under Mixed Time Varying, Time Invariant and Parametric Uncertainty

    Get PDF
    Robustness analysis is considered for systems with structured uncertainty involving a combination of linear time-invariant and linear time-varying perturbations, and parametric uncertainty. A necessary and sufficient condition for robust stability in terms of the structured singular value μ is obtained, based on a finite augmentation of the original problem. The augmentation corresponds to considering the system at a fixed number of frequencies. Sufficient conditions based on scaled small-gain are also considered and characterized

    Quantitative Performance Bounds in Biomolecular Circuits due to Temperature Uncertainty

    Get PDF
    Performance of biomolecular circuits is affected by changes in temperature, due to its influence on underlying reaction rate parameters. While these performance variations have been estimated using Monte Carlo simulations, how to analytically bound them is generally unclear. To address this, we apply control-theoretic representations of uncertainty to examples of different biomolecular circuits, developing a framework to represent uncertainty due to temperature. We estimate bounds on the steady-state performance of these circuits due to temperature uncertainty. Through an analysis of the linearised dynamics, we represent this uncertainty as a feedback uncertainty and bound the variation in the magnitude of the input-output transfer function, providing a estimate of the variation in frequency-domain properties. Finally, we bound the variation in the time trajectories, providing an estimate of variation in time-domain properties. These results should enable a framework for analytical characterisation of uncertainty in biomolecular circuit performance due to temperature variation and may help in estimating relative performance of different controllers

    Stochastic Satbility and Performance Robustness of Linear Multivariable Systems

    Get PDF
    Stochastic robustness, a simple technique used to estimate the robustness of linear, time invariant systems, is applied to a single-link robot arm control system. Concepts behind stochastic stability robustness are extended to systems with estimators and to stochastic performance robustness. Stochastic performance robustness measures based on classical design specifications are introduced, and the relationship between stochastic robustness measures and control system design parameters are discussed. The application of stochastic performance robustness, and the relationship between performance objectives and design parameters are demonstrated by means of example. The results prove stochastic robustness to be a good overall robustness analysis method that can relate robustness characteristics to control system design parameters

    Stability and Performance Analysis of Systems Under Constraints

    Get PDF
    All real world control systems must deal with actuator and state constraints. Standard conic sector bounded nonlinearity stability theory provides methods for analyzing the stability and performance of systems under constraints, but it is well-known that these conditions can be very conservative. A method is developed to reduce conservatism in the analysis of constraints by representing them as nonlinear real parametric uncertainty

    Properties of the mixed μ problem and its bounds

    Get PDF
    Upper and lower bounds for the mixed μ problem have recently been developed, and here we examine the relationship of these bounds to each other and to μ. A number of interesting properties are developed and the implications of these properties for the robustness analysis of linear systems and the development of practical computation schemes are discussed. In particular we find that current techniques can only guarantee easy computation for large problems when μ equals its upper bound, and computational complexity results prohibit this possibility for general problems. In this context we present some special cases where computation is easy and make some direct comparisons between mixed μ and “Kharitonov-type” analysis methods

    Analysis of Implicit Uncertain Systems. Part II: Constant Matrix Problems and Application to Robust H2 Analysis

    Get PDF
    This paper introduces an implicit framework for the analysis of uncertain systems, of which the general properties were described in Part I. In Part II, the theory is specialized to problems which admit a finite dimensional formulation. A constant matrix version of implicit analysis is presented, leading to a generalization of the structured singular value μ as the stability measure; upper bounds are developed and analyzed in detail. An application of this framework results in a practical method for robust H2 analysis: computing robust performance in the presence of norm-bounded perturbations and white-noise disturbances
    corecore