13,173 research outputs found

    Robustness of onion-like correlated networks against targeted attacks

    Full text link
    Recently, it was found by Schneider et al. [Proc. Natl. Acad. Sci. USA, 108, 3838 (2011)], using simulations, that scale-free networks with "onion structure" are very robust against targeted high degree attacks. The onion structure is a network where nodes with almost the same degree are connected. Motivated by this work, we propose and analyze, based on analytical considerations, an onion-like candidate for a nearly optimal structure against simultaneous random and targeted high degree node attacks. The nearly optimal structure can be viewed as a hierarchically interconnected random regular graphs, the degrees and populations of which are specified by the degree distribution. This network structure exhibits an extremely assortative degree-degree correlation and has a close relationship to the "onion structure." After deriving a set of exact expressions that enable us to calculate the critical percolation threshold and the giant component of a correlated network for an arbitrary type of node removal, we apply the theory to the cases of random scale-free networks that are highly vulnerable against targeted high degree node removal. Our results show that this vulnerability can be significantly reduced by implementing this onion-like type of degree-degree correlation without much undermining the almost complete robustness against random node removal. We also investigate in detail the robustness enhancement due to assortative degree-degree correlation by introducing a joint degree-degree probability matrix that interpolates between an uncorrelated network structure and the onion-like structure proposed here by tuning a single control parameter. The optimal values of the control parameter that maximize the robustness against simultaneous random and targeted attacks are also determined. Our analytical calculations are supported by numerical simulations.Comment: 12 pages, 8 figure

    Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependency

    Full text link
    Increased coupling between critical infrastructure networks, such as power and communication systems, will have important implications for the reliability and security of these systems. To understand the effects of power-communication coupling, several have studied interdependent network models and reported that increased coupling can increase system vulnerability. However, these results come from models that have substantially different mechanisms of cascading, relative to those found in actual power and communication networks. This paper reports on two sets of experiments that compare the network vulnerability implications resulting from simple topological models and models that more accurately capture the dynamics of cascading in power systems. First, we compare a simple model of topological contagion to a model of cascading in power systems and find that the power grid shows a much higher level of vulnerability, relative to the contagion model. Second, we compare a model of topological cascades in coupled networks to three different physics-based models of power grids coupled to communication networks. Again, the more accurate models suggest very different conclusions. In all but the most extreme case, the physics-based power grid models indicate that increased power-communication coupling decreases vulnerability. This is opposite from what one would conclude from the coupled topological model, in which zero coupling is optimal. Finally, an extreme case in which communication failures immediately cause grid failures, suggests that if systems are poorly designed, increased coupling can be harmful. Together these results suggest design strategies for reducing the risk of cascades in interdependent infrastructure systems
    • …
    corecore