2,072 research outputs found

    Safe Learning of Quadrotor Dynamics Using Barrier Certificates

    Full text link
    To effectively control complex dynamical systems, accurate nonlinear models are typically needed. However, these models are not always known. In this paper, we present a data-driven approach based on Gaussian processes that learns models of quadrotors operating in partially unknown environments. What makes this challenging is that if the learning process is not carefully controlled, the system will go unstable, i.e., the quadcopter will crash. To this end, barrier certificates are employed for safe learning. The barrier certificates establish a non-conservative forward invariant safe region, in which high probability safety guarantees are provided based on the statistics of the Gaussian Process. A learning controller is designed to efficiently explore those uncertain states and expand the barrier certified safe region based on an adaptive sampling scheme. In addition, a recursive Gaussian Process prediction method is developed to learn the complex quadrotor dynamics in real-time. Simulation results are provided to demonstrate the effectiveness of the proposed approach.Comment: Submitted to ICRA 2018, 8 page

    MATLAB SIMULATION OF THE HYBRID OF RECURSIVE NEURAL DYNAMICS FOR ONLINE MATRIX INVERSION

    Get PDF
    A novel kind of a hybrid recursive neural implicit dynamics for real-time matrix inversion has been recently proposed and investigated. Our goal is to compare the hybrid recursive neural implicit dynamics on the one hand, and conventional explicit neural dynamics on the other hand. Simulation results show that the hybrid model can coincide better with systems in practice and has higher abilities in representing dynamic systems. More importantly, hybrid model can achieve superior convergence performance in comparison with the existing dynamic systems, specifically recently-proposed Zhang dynamics. This paper presents the Simulink model of a hybrid recursive neural implicit dynamics and gives a simulation and comparison to the existing Zhang dynamics for real-time matrix inversion. Simulation results confirm a superior convergence of the hybrid model compared to Zhang model

    Implementation and Evaluation of Multiple Adaptive Control Technologies for a Generic Transport Aircraft Simulation

    Get PDF
    Presented here is the evaluation of multiple adaptive control technologies for a generic transport aircraft simulation. For this study, seven model reference adaptive control (MRAC) based technologies were considered. Each technology was integrated into an identical dynamic-inversion control architecture and tuned using a methodology based on metrics and specific design requirements. Simulation tests were then performed to evaluate each technology s sensitivity to time-delay, flight condition, model uncertainty, and artificially induced cross-coupling. The resulting robustness and performance characteristics were used to identify potential strengths, weaknesses, and integration challenges of the individual adaptive control technologie

    PAC: A Novel Self-Adaptive Neuro-Fuzzy Controller for Micro Aerial Vehicles

    Full text link
    There exists an increasing demand for a flexible and computationally efficient controller for micro aerial vehicles (MAVs) due to a high degree of environmental perturbations. In this work, an evolving neuro-fuzzy controller, namely Parsimonious Controller (PAC) is proposed. It features fewer network parameters than conventional approaches due to the absence of rule premise parameters. PAC is built upon a recently developed evolving neuro-fuzzy system known as parsimonious learning machine (PALM) and adopts new rule growing and pruning modules derived from the approximation of bias and variance. These rule adaptation methods have no reliance on user-defined thresholds, thereby increasing the PAC's autonomy for real-time deployment. PAC adapts the consequent parameters with the sliding mode control (SMC) theory in the single-pass fashion. The boundedness and convergence of the closed-loop control system's tracking error and the controller's consequent parameters are confirmed by utilizing the LaSalle-Yoshizawa theorem. Lastly, the controller's efficacy is evaluated by observing various trajectory tracking performance from a bio-inspired flapping-wing micro aerial vehicle (BI-FWMAV) and a rotary wing micro aerial vehicle called hexacopter. Furthermore, it is compared to three distinctive controllers. Our PAC outperforms the linear PID controller and feed-forward neural network (FFNN) based nonlinear adaptive controller. Compared to its predecessor, G-controller, the tracking accuracy is comparable, but the PAC incurs significantly fewer parameters to attain similar or better performance than the G-controller.Comment: This paper has been accepted for publication in Information Science Journal 201

    Real-Time Progressive Learning: Mutually Reinforcing Learning and Control with Neural-Network-Based Selective Memory

    Full text link
    Memory, as the basis of learning, determines the storage, update and forgetting of the knowledge and further determines the efficiency of learning. Featured with a mechanism of memory, a radial basis function neural network (RBFNN) based learning control scheme named real-time progressive learning (RTPL) is proposed to learn the unknown dynamics of the system with guaranteed stability and closed-loop performance. Instead of the stochastic gradient descent (SGD) update law in adaptive neural control (ANC), RTPL adopts the selective memory recursive least squares (SMRLS) algorithm to update the weights of the RBFNN. Through SMRLS, the approximation capabilities of the RBFNN are uniformly distributed over the feature space and thus the passive knowledge forgetting phenomenon of SGD method is suppressed. Subsequently, RTPL achieves the following merits over the classical ANC: 1) guaranteed learning capability under low-level persistent excitation (PE), 2) improved learning performance (learning speed, accuracy and generalization capability), and 3) low gain requirement ensuring robustness of RTPL in practical applications. Moreover, the RTPL based learning and control will gradually reinforce each other during the task execution, making it appropriate for long-term learning control tasks. As an example, RTPL is used to address the tracking control problem of a class of nonlinear systems with RBFNN being an adaptive feedforward controller. Corresponding theoretical analysis and simulation studies demonstrate the effectiveness of RTPL.Comment: 16 pages, 15 figure

    Parameter Estimation Analysis for Hybrid Adaptive Fault Tolerant Control

    Get PDF
    Research efforts have increased in recent years toward the development of intelligent fault tolerant control laws, which are capable of helping the pilot to safely maintain aircraft control at post failure conditions. Researchers at West Virginia University (WVU) have been actively involved in the development of fault tolerant adaptive control laws in all three major categories: direct, indirect, and hybrid. The first implemented design to provide adaptation was a direct adaptive controller, which used artificial neural networks to generate augmentation commands in order to reduce the modeling error. Indirect adaptive laws were implemented in another controller, which utilized online PID to estimate and update the controller parameter. Finally, a new controller design was introduced, which integrated both direct and indirect control laws. This controller is known as hybrid adaptive controller.;This last control design outperformed the two earlier designs in terms of less NNs effort and better tracking quality. The performance of online PID has an important role in the quality of the hybrid controller; therefore, the quality of the estimation will be of a great importance. Unfortunately, PID is not perfect and the online estimation process has some inherited issues; the online PID estimates are primarily affected by delays and biases. In order to ensure updating reliable estimates to the controller, the estimator consumes some time to converge. Moreover, the estimator will often converge to a biased value. This thesis conducts a sensitivity analysis for the estimation issues, delay and bias, and their effect on the tracking quality. In addition, the performance of the hybrid controller as compared to direct adaptive controller is explored.;In order to serve this purpose, a simulation environment in MATLAB/SIMULINK has been created. The simulation environment is customized to provide the user with the flexibility to add different combinations of biases and delays to the explored derivatives. Biases were considered in the range -500% to 500% and delays in the range 0.5 to 40 seconds. The stability and control derivatives considered in this research effort are a combination of decoupled derivatives in the three channels, longitudinal, lateral, and directional. Numerous simulation scenarios and flight conditions are considered to provide more credibility to the obtained results. In addition, a statistical analysis has been conducted to assess the results. The performance of the control laws has been evaluated in terms of the integral of the error in tracking the three desired angular rates, pitch, roll, and yaw. In addition, the effort of the neural networks exerted to compensate for tracking errors is considered in the analysis as well.;The results show that in order to obtain reliable estimates for the investigated derivatives, the estimator needs to generate values with less than five seconds delay. In addition, derivatives estimates are within 50% or -15% off the exact values. Moreover, the importance of updating derivatives depends on the maneuver scenario and the flight condition. The estimation process at quasi-steady state conditions provides reliable estimates as opposed to estimation during fast dynamic changes; also, the estimation process has better performance at large rate of change of derivatives values

    Two-layer adaptive augmentation for incremental backstepping flight control of transport aircraft in uncertain conditions

    Get PDF
    Presence of uncertainties caused by unforeseen malfunctions in actuation system or changes in aircraft behaviour could lead to aircraft loss-of-control during flight. The paper presents Two-Layer Adaptive augmentation for Incremental Backstepping (TLA-IBKS) control algorithm designed for a large transport aircraft. IBKS uses angular accelerations and current control deflections to reduce the dependency on the aircraft model. However, it requires knowledge of control effectiveness. The proposed technique is capable to detect possible failures for an overactuated system. At the first layer, the system performs monitoring of a combined effectiveness and detects possible failures via an innovation process. If a problem is detected the algorithm initiates the second-layer algorithm for adaptation of effectiveness of individual control effectors. Filippov generalization for nonlinear differential equations with discontinuous right-hand sides is utilized to develop Lyapunov based tuning function adaptive law for the second layer adaptation and to prove uniform asymptotic stability of the resultant closed-loop system. Conducted simulation manifests that if the input-affine property of the IBKS is violated, e.g., in severe conditions with a combination of multiple failures, the IBKS can lose stability. Meanwhile, the proposed TLA-IBKS algorithm demonstrates improved stability and tracking performance
    corecore