12 research outputs found

    DeSVig: Decentralized Swift Vigilance Against Adversarial Attacks in Industrial Artificial Intelligence Systems

    Get PDF
    Individually reinforcing the robustness of a single deep learning model only gives limited security guarantees especially when facing adversarial examples. In this article, we propose DeSVig, a decentralized swift vigilance framework to identify adversarial attacks in an industrial artificial intelligence systems (IAISs), which enables IAISs to correct the mistake in a few seconds. The DeSVig is highly decentralized, which improves the effectiveness of recognizing abnormal inputs. We try to overcome the challenges on ultralow latency caused by dynamics in industries using peculiarly designated mobile edge computing and generative adversarial networks. The most important advantage of our work is that it can significantly reduce the failure risks of being deceived by adversarial examples, which is critical for safety-prioritized and delay-sensitive environments. In our experiments, adversarial examples of industrial electronic components are generated by several classical attacking models. Experimental results demonstrate that the DeSVig is more robust, efficient, and scalable than some state-of-art defenses

    Towards Deep Learning with Competing Generalisation Objectives

    Get PDF
    The unreasonable effectiveness of Deep Learning continues to deliver unprecedented Artificial Intelligence capabilities to billions of people. Growing datasets and technological advances keep extending the reach of expressive model architectures trained through efficient optimisations. Thus, deep learning approaches continue to provide increasingly proficient subroutines for, among others, computer vision and natural interaction through speech and text. Due to their scalable learning and inference priors, higher performance is often gained cost-effectively through largely automatic training. As a result, new and improved capabilities empower more people while the costs of access drop. The arising opportunities and challenges have profoundly influenced research. Quality attributes of scalable software became central desiderata of deep learning paradigms, including reusability, efficiency, robustness and safety. Ongoing research into continual, meta- and robust learning aims to maximise such scalability metrics in addition to multiple generalisation criteria, despite possible conflicts. A significant challenge is to satisfy competing criteria automatically and cost-effectively. In this thesis, we introduce a unifying perspective on learning with competing generalisation objectives and make three additional contributions. When autonomous learning through multi-criteria optimisation is impractical, it is reasonable to ask whether knowledge of appropriate trade-offs could make it simultaneously effective and efficient. Informed by explicit trade-offs of interest to particular applications, we developed and evaluated bespoke model architecture priors. We introduced a novel architecture for sim-to-real transfer of robotic control policies by learning progressively to generalise anew. Competing desiderata of continual learning were balanced through disjoint capacity and hierarchical reuse of previously learnt representations. A new state-of-the-art meta-learning approach is then proposed. We showed that meta-trained hypernetworks efficiently store and flexibly reuse knowledge for new generalisation criteria through few-shot gradient-based optimisation. Finally, we characterised empirical trade-offs between the many desiderata of adversarial robustness and demonstrated a novel defensive capability of implicit neural networks to hinder many attacks simultaneously
    corecore