827 research outputs found

    A robust adaptive robot controller

    Get PDF
    A globally convergent adaptive control scheme for robot motion control with the following features is proposed. First, the adaptation law possesses enhanced robustness with respect to noisy velocity measurements. Second, the controller does not require the inclusion of high gain loops that may excite the unmodeled dynamics and amplify the noise level. Third, we derive for the unknown parameter design a relationship between compensator gains and closed-loop convergence rates that is independent of the robot task. A simulation example of a two-DOF manipulator featuring some aspects of the control scheme is give

    Experimental comparison of parameter estimation methods in adaptive robot control

    Get PDF
    In the literature on adaptive robot control a large variety of parameter estimation methods have been proposed, ranging from tracking-error-driven gradient methods to combined tracking- and prediction-error-driven least-squares type adaptation methods. This paper presents experimental data from a comparative study between these adaptation methods, performed on a two-degrees-of-freedom robot manipulator. Our results show that the prediction error concept is sensitive to unavoidable model uncertainties. We also demonstrate empirically the fast convergence properties of least-squares adaptation relative to gradient approaches. However, in view of the noise sensitivity of the least-squares method, the marginal performance benefits, and the computational burden, we (cautiously) conclude that the tracking-error driven gradient method is preferred for parameter adaptation in robotic applications

    A passivity approach to controller-observer design for robots

    Get PDF
    Passivity-based control methods for robots, which achieve the control objective by reshaping the robot system's natural energy via state feedback, have, from a practical point of view, some very attractive properties. However, the poor quality of velocity measurements may significantly deteriorate the control performance of these methods. In this paper the authors propose a design strategy that utilizes the passivity concept in order to develop combined controller-observer systems for robot motion control using position measurements only. To this end, first a desired energy function for the closed-loop system is introduced, and next the controller-observer combination is constructed such that the closed-loop system matches this energy function, whereas damping is included in the controller- observer system to assure asymptotic stability of the closed-loop system. A key point in this design strategy is a fine tuning of the controller and observer structure to each other, which provides solutions to the output-feedback robot control problem that are conceptually simple and easily implementable in industrial robot applications. Experimental tests on a two-DOF manipulator system illustrate that the proposed controller-observer systems enable the achievement of higher performance levels compared to the frequently used practice of numerical position differentiation for obtaining a velocity estimat

    Robust tuning of robot control systems

    Get PDF
    The computed torque control problem is examined for a robot arm with flexible, geared, joint drive systems which are typical in many industrial robots. The standard computed torque algorithm is not directly applicable to this class of manipulators because of the dynamics introduced by the joint drive system. The proposed approach to computed torque control combines a computed torque algorithm with torque controller at each joint. Three such control schemes are proposed. The first scheme uses the joint torque control system currently implemented on the robot arm and a novel form of the computed torque algorithm. The other two use the standard computed torque algorithm and a novel model following torque control system based on model following techniques. Standard tasks and performance indices are used to evaluate the performance of the controllers. Both numerical simulations and experiments are used in evaluation. The study shows that all three proposed systems lead to improved tracking performance over a conventional PD controller

    Performance comparison of structured H∞ based looptune and LQR for a 4-DOF robotic manipulator

    Get PDF
    We explore looptune, a MATLAB-based structured H1 synthesis technique in the context of robotics. Position control of a 4 Degree of Freedom (DOF) serial robotic manipulator developed using Simulink is the problem under consideration. Three full state feedback control systems were developed, analyzed and compared for both steady-state and transient performance using the Linear Quadratic Regulator (LQR) and looptune. Initially, a single gain feedback controller was synthesized using LQR. This system was then modified by augmenting the state feedback controller with Proportional Integral (PI) and Integral regulators, thereby creating a second and third control system respectively. In both the second and third control systems, the LQR synthesized gain and additional gains were further tuned using looptune to achieve improvement in performance. The second and third systems were also compared in terms of tracking a time-dependent trajectory. Finally, the LQR and looptune synthesized controllers were tested for robustness by simultaneously increasing the mass of each manipulator link. In comparison to LQR, the second system consisting of Single Input Single Output (SISO) PI controllers and the state feedback matrix succeeded in meeting the control objectives in terms of performance, optimality, trajectory tracking, and robustness. The third system did not improve performance in contrast to LQR, but still showed robustness under mass variation. In conclusion, our results have shown looptune to have a comparatively better performance over LQR thereby highlighting its promising potential for future emerging control system applications

    Flexible-Link Robot Control Using a Linear Parameter Varying Systems Methodology

    Get PDF
    This paper addresses the issues of the Linear Parameter Varying (LPV) modelling and control of flexible-link robot manipulators. The LPV formalism allows the synthesis of nonlinear control laws and the assessment of their closed-loop stability and performances in a simple and effective manner, based on the use of Linear Matrix Inequalities (LMI). Following the quasi-LPV modelling approach, an LPV model of a flexible manipulator is obtained, starting from the nonlinear dynamic model stemming from Euler-Lagrange equations. Based on this LPV model, which has a rational dependence in terms of the varying parameters, two different methods for the synthesis of LPV controllers are explored. They guarantee the asymptotic stability and some level of closed-loop ℒ 2 -gain performance on a bounded parametric set. The first method exploits a descriptor representation that simplifies the rational dependence of the LPV model, whereas the second one manages the troublesome rational dependence by using dilated LMI conditions and taking the particular structure of the model into account. The resulting controllers involve the measured state variables only, namely the joint positions and velocities. Simulation results are presented that illustrate the validity of the proposed control methodology. Comparisons with an inversion-based nonlinear control method are performed in the presence of velocity measurement noise, model uncertainties and high-frequency inputs

    Evolutionary algorithms for active vibration control of flexible manipulator

    Get PDF
    Flexible manipulator systems offer numerous advantages over their rigid counterparts including light weight, faster system response, among others. However, unwanted vibration will occur when flexible manipulator is subjected to disturbances. If the advantages of flexible manipulator are not to be sacrificed, an accurate model and efficient control system must be developed. This thesis presents the development of a Proportional-Integral-Derivative (PID) controller tuning method using evolutionary algorithms (EA) for a single-link flexible manipulator system. Initially, a single link flexible manipulator rig, constrained to move in horizontal direction, was designed and fabricated. The input and output experimental data of the hub angle and endpoint acceleration of the flexible manipulator were acquired. The dynamics of the system was later modeled using a system identification (SI) method utilizing EA with linear auto regressive with exogenous (ARX) model structure. Two novel EAs, Genetic Algorithm with Parameter Exchanger (GAPE) and Particle Swarm Optimization with Explorer (PSOE) have been developed in this study by modifying the original Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) algorithms. These novel algorithms were introduced for the identification of the flexible manipulator system. Their effectiveness was then evaluated in comparison to the original GA and PSO. Results indicated that the identification of the flexible manipulator system using PSOE is better compared to other methods. Next, PID controllers were tuned using EA for the input tracking and the endpoint vibration suppression of the flexible manipulator structure. For rigid motion control of hub angle, an auto-tuned PID controller was implemented. While for vibration suppression of the endpoint, several PID controllers were tuned using GA, GAPE, PSO and PSOE. The results have shown that the conventional auto-tuned PID was effective enough for the input tracking of the rigid motion. However, for end-point vibration suppression, the result showed the superiority of PID-PSOE in comparison to PID-GA, PID-GAPE and PID-PSO. The performance of the best simulated controller was validated experimentally later. Through experimental validation, it was found that the PID-PSOE was capable to suppress the vibration of the single-link flexible manipulator with highest attenuation of 31.3 dB at the first mode of the vibration. The outcomes of this research revealed the effectiveness of the PID controller tuned using PSOE for the endpoint vibration suppression of the flexible manipulator amongst other evolutionary methods

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    Modelling and intelligent control of double-link flexible robotic manipulator

    Get PDF
    The use of robotic manipulator with multi-link structure has a great influence in most of the current industries. However, controlling the motion of multi-link manipulator has become a challenging task especially when the flexible structure is used. Currently, the system utilizes the complex mathematics to solve desired hub angle with the coupling effect and vibration in the system. Thus, this research aims to develop a dynamic system and controller for double-link flexible robotics manipulator (DLFRM) with the improvement on hub angle position and vibration suppression. A laboratory sized DLFRM moving in horizontal direction is developed and fabricated to represent the actual dynamics of the system. The research utilized neural network as the model estimation. Results indicated that the identification of the DLFRM system using multi-layer perceptron (MLP) outperformed the Elman neural network (ENN). In the controllers’ development, this research focuses on two main parts namely fixed controller and adaptive controller. In fixed controller, the metaheuristic algorithms known as Particle Swarm Optimization (PSO) and Artificial Bees Colony (ABC) were utilized to find optimum value of PID controller parameter to track the desired hub angle and supress the vibration based on the identified models obtained earlier. For the adaptive controller, self-tuning using iterative learning algorithm (ILA) was implemented to adapt the controller parameters to meet the desired performances when there were changes to the system. It was observed that self-tuning using ILA can track the desired hub angle and supress the vibration even when payload was added to the end effector of the system. In contrast, the fixed controller degraded when added payload exceeds 20 g. The performance of these control schemes was analysed separately via real-time PC-based control. The behaviour of the system response was observed in terms of trajectory tracking and vibration suppression. As a conclusion, it was found that the percentage of improvement achieved experimentally by the self-tuning controller over the fixed controller (PID-PSO) for settling time are 3.3 % and 3.28 % of each link respectively. The steady state errors of links 1 and 2 are improved by 91.9 % and 66.7 % respectively. Meanwhile, the vibration suppression for links 1 and 2 are improved by 76.7 % and 67.8 % respectively

    Robotic manipulators for single access surgery

    Get PDF
    This thesis explores the development of cooperative robotic manipulators for enhancing surgical precision and patient outcomes in single-access surgery and, specifically, Transanal Endoscopic Microsurgery (TEM). During these procedures, surgeons manipulate a heavy set of instruments via a mechanical clamp inserted in the patient’s body through a surgical port, resulting in imprecise movements, increased patient risks, and increased operating time. Therefore, an articulated robotic manipulator with passive joints is initially introduced, featuring built-in position and force sensors in each joint and electronic joint brakes for instant lock/release capability. The articulated manipulator concept is further improved with motorised joints, evolving into an active tool holder. The joints allow the incorporation of advanced robotic capabilities such as ultra-lightweight gravity compensation and hands-on kinematic reconfiguration, which can optimise the placement of the tool holder in the operating theatre. Due to the enhanced sensing capabilities, the application of the active robotic manipulator was further explored in conjunction with advanced image guidance approaches such as endomicroscopy. Recent advances in probe-based optical imaging such as confocal endomicroscopy is making inroads in clinical uses. However, the challenging manipulation of imaging probes hinders their practical adoption. Therefore, a combination of the fully cooperative robotic manipulator with a high-speed scanning endomicroscopy instrument is presented, simplifying the incorporation of optical biopsy techniques in routine surgical workflows. Finally, another embodiment of a cooperative robotic manipulator is presented as an input interface to control a highly-articulated robotic instrument for TEM. This master-slave interface alleviates the drawbacks of traditional master-slave devices, e.g., using clutching mechanics to compensate for the mismatch between slave and master workspaces, and the lack of intuitive manipulation feedback, e.g. joint limits, to the user. To address those drawbacks a joint-space robotic manipulator is proposed emulating the kinematic structure of the flexible robotic instrument under control.Open Acces
    corecore