234 research outputs found

    A Deep-Learning Based Robust Framework Against Adversarial P.E. and Cryptojacking Malware

    Get PDF
    This graduate thesis introduces novel, deep-learning based frameworks that are resilient to adversarial P.E. and cryptojacking malware. We propose a method that uses a convolutional neural network (CNN) to classify image representations of malware, that provides robustness against numerous adversarial attacks. Our evaluation concludes that the image-based malware classifier is significantly more robust to adversarial attacks than a state-of-the-art ML-based malware classifier, and remarkably drops the evasion rate of adversarial samples to 0% in certain attacks. Further, we develop MINOS, a novel, lightweight cryptojacking detection system that accurately detects the presence of unwarranted mining activity in real-time. MINOS can detect mining activity with a low TNR and FPR, in an average of 25.9 milliseconds while using a maximum of 4% of CPU and 6.5% of RAM. Therefore, it can be concluded that the frameworks presented in this thesis attain high accuracy, are computationally inexpensive, and are resistant to adversarial perturbations
    • …
    corecore