359 research outputs found

    Robustly disjoint paths with segment routing

    Get PDF
    Motivated by conversations with operators and by possibilities to unlock future Internet-based applications, we study how to enable Internet Service Providers (ISPs) to reliably offer connectivity through disjoint paths as an advanced, value-added service. As ISPs are increasingly deploying Segment Routing (SR), we focus on implementing such service with SR. We introduce the concept of robustly disjoint paths, pairs of paths that are constructed to remain disjoint even after an input set of failures, with no external intervention (e.g., configuration change). We extend the routing theory, study the problem complexity, and design efficient algorithms to automatically compute SR-based robustly disjoint paths. Our algorithms enable a fully automated approach to offer the disjoint-path connectivity, based on configuration synthesis. Our evaluation on real topologies shows that such an approach is practical, and scales to large ISP networks

    Segment Routing: a Comprehensive Survey of Research Activities, Standardization Efforts and Implementation Results

    Full text link
    Fixed and mobile telecom operators, enterprise network operators and cloud providers strive to face the challenging demands coming from the evolution of IP networks (e.g. huge bandwidth requirements, integration of billions of devices and millions of services in the cloud). Proposed in the early 2010s, Segment Routing (SR) architecture helps face these challenging demands, and it is currently being adopted and deployed. SR architecture is based on the concept of source routing and has interesting scalability properties, as it dramatically reduces the amount of state information to be configured in the core nodes to support complex services. SR architecture was first implemented with the MPLS dataplane and then, quite recently, with the IPv6 dataplane (SRv6). IPv6 SR architecture (SRv6) has been extended from the simple steering of packets across nodes to a general network programming approach, making it very suitable for use cases such as Service Function Chaining and Network Function Virtualization. In this paper we present a tutorial and a comprehensive survey on SR technology, analyzing standardization efforts, patents, research activities and implementation results. We start with an introduction on the motivations for Segment Routing and an overview of its evolution and standardization. Then, we provide a tutorial on Segment Routing technology, with a focus on the novel SRv6 solution. We discuss the standardization efforts and the patents providing details on the most important documents and mentioning other ongoing activities. We then thoroughly analyze research activities according to a taxonomy. We have identified 8 main categories during our analysis of the current state of play: Monitoring, Traffic Engineering, Failure Recovery, Centrally Controlled Architectures, Path Encoding, Network Programming, Performance Evaluation and Miscellaneous...Comment: SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIAL

    Huge networks, tiny faulty nodes

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 87-91).Can one build, and efficiently use, networks of arbitrary size and topology using a "standard" node whose resources, in terms of memory and reliability, do not need to scale up with the complexity and size of the network? This thesis addresses two important aspects of this question. The first is whether one can achieve efficient connectivity despite the presence of a constant probability of faults per node/link. Efficient connectivity means (informally) having every pair of regions connected by a constant fraction of the independent, entirely non-faulty paths that would be present if the entire network were fault free - even at distances where each path has only a vanishingly small probability of being fault-free. The answer is yes, as long as some very mild topological conditions on the high level structure of the network are met - informally, if the network is not too "thin" and if it does not contain too many large "holes". The results go against some established "empyrical wisdom" in the networking community. The second issue addressed by this thesis is whether one can route efficiently on a network of arbitrary size and topology using only a constant number c of bits/node (even if c is less than the logarithm of the network's size!). Routing efficiently means (informally) that message delivery should only stretch the delivery path by a constant factor. The answer again is yes, as long as the volume of the network grows only polynomially with its radius (otherwise, we run into established lower bounds). This effectively captures every network one may build in a universe (like our own) with finite dimensionality using links of a fixed, maximum length and nodes with a fixed, minimum volume. The results extend the current results for compact routing, allowing one to route efficiently on a much larger class of networks than had previously been known, with many fewer bits.by Enoch Peserico.Ph.D

    Routing on the Shortest Pairs of Disjoint Paths

    Get PDF
    Recent trends point towards communication networks will be multi-path in nature to increase failure resilience, support load-balancing and provide alternate paths for congestion avoidance. We argue that the transition from singlepath to multi-path routing should be as seamless as possible in order to lower the deployability barrier for network operators. Therefore, in this paper we are focusing on the problem of routing along the shortest pairs of disjoint paths between each source-destination pair over the currently deployed link-state routing architecture. We show that the union of disjoint pathpairs towards a given destination has a special structure, and we propose an efficient tag encoding scheme which requires only one extra forwarding table entry per router per destination. Our numerical evaluations demonstrate that in real-world topologies usually only 4 bit tags are sufficient in the packet headers to route on the disjoint path-pairs. Finally, we show that our tags automatically encode additional paths beyond the shortest pair of disjoint paths, including the shortest paths themselves, which enables incremental deployment of the proposed method

    SIMULATION-BASED EVALUATION OF RESERVATION MECHANISMS FOR THE TIME WINDOW ROUTING METHOD

    Get PDF
    Automated warehouses operated by a fleet of robots offer great flexibility, since fleet size can be adjusted easily to throughput requirements. Furthermore, they provide higher redundancy compared to common solutions for automated storage and retrieval systems.On the other hand, these systems require more complex control strategies to run robustly and efficiently. Special routing and deadlock handling strategies are necessary to avoid blocking and collisions among the robots.In this contribution, we focus on the time window routing method, an approach for avoiding deadlocks byreserving routes in advance. We present and discussdifferent reservation mechanisms that are evaluated bythe means of simulation.Automated warehouses operated by a fleet of robots offer great flexibility, since fleet size can be adjusted easily to throughput requirements. Furthermore, they provide higher redundancy compared to common solutions for automated storage and retrieval systems. On the other hand, these systems require more complex control strategies to run robustly and efficiently. Special routing and deadlock handling strategies are necessary to avoid blocking and collisions among the robots. In this contribution, we focus on the time window routing method, an approach for avoiding deadlocks by reserving routes in advance. We present and discuss different reservation mechanisms that are evaluated by the means of simulation

    Multi-robot Boundary Coverage with Plan Revision

    Get PDF
    This paper revisits the multi-robot boundary coverage problem in which a group of k robots must inspect every point on the boundary of a 2-dimensional environment. We focus on the case in which revision of the original inspection plan may be necessary due to changes in the robot team size or the environment. Building upon prior work, which presented a graph-based approach to path planning for this problem, we present a graph representation of the task that is greatly reduced in complexity and a path revision algorithm appropriate for addressing such changes

    Coordination of Multirobot Systems Under Temporal Constraints

    Full text link
    Multirobot systems have great potential to change our lives by increasing efficiency or decreasing costs in many applications, ranging from warehouse logistics to construction. They can also replace humans in dangerous scenarios, for example in a nuclear disaster cleanup mission. However, teleoperating robots in these scenarios would severely limit their capabilities due to communication and reaction delays. Furthermore, ensuring that the overall behavior of the system is safe and correct for a large number of robots is challenging without a principled solution approach. Ideally, multirobot systems should be able to plan and execute autonomously. Moreover, these systems should be robust to certain external factors, such as failing robots and synchronization errors and be able to scale to large numbers, as the effectiveness of particular tasks might depend directly on these criteria. This thesis introduces methods to achieve safe and correct autonomous behavior for multirobot systems. Firstly, we introduce a novel logic family, called counting logics, to describe the high-level behavior of multirobot systems. Counting logics capture constraints that arise naturally in many applications where the identity of the robot is not important for the task to be completed. We further introduce a notion of robust satisfaction to analyze the effects of synchronization errors on the overall behavior and provide complexity analysis for a fragment of this logic. Secondly, we propose an optimization-based algorithm to generate a collection of robot paths to satisfy the specifications given in counting logics. We assume that the robots are perfectly synchronized and use a mixed-integer linear programming formulation to take advantage of the recent advances in this field. We show that this approach is complete under the perfect synchronization assumption. Furthermore, we propose alternative encodings that render more efficient solutions under certain conditions. We also provide numerical results that showcase the scalability of our approach, showing that it scales to hundreds of robots. Thirdly, we relax the perfect synchronization assumption and show how to generate paths that are robust to bounded synchronization errors, without requiring run-time communication. However, the complexity of such an approach is shown to depend on the error bound, which might be limiting. To overcome this issue, we propose a hierarchical method whose complexity does not depend on this bound. We show that, under mild conditions, solutions generated by the hierarchical method can be executed safely, even if such a bound is not known. Finally, we propose a distributed algorithm to execute multirobot paths while avoiding collisions and deadlocks that might occur due to synchronization errors. We recast this problem as a conflict resolution problem and characterize conditions under which existing solutions to the well-known drinking philosophers problem can be used to design control policies that prevents collisions and deadlocks. We further provide improvements to this naive approach to increase the amount of concurrency in the system. We demonstrate the effectiveness of our approach by comparing it to the naive approach and to the state-of-the-art.PHDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162921/1/ysahin_1.pd

    QoE-Centric Control and Management of Multimedia Services in Software Defined and Virtualized Networks

    Get PDF
    Multimedia services consumption has increased tremendously since the deployment of 4G/LTE networks. Mobile video services (e.g., YouTube and Mobile TV) on smart devices are expected to continue to grow with the emergence and evolution of future networks such as 5G. The end user’s demand for services with better quality from service providers has triggered a trend towards Quality of Experience (QoE) - centric network management through efficient utilization of network resources. However, existing network technologies are either unable to adapt to diverse changing network conditions or limited in available resources. This has posed challenges to service providers for provisioning of QoE-centric multimedia services. New networking solutions such as Software Defined Networking (SDN) and Network Function Virtualization (NFV) can provide better solutions in terms of QoE control and management of multimedia services in emerging and future networks. The features of SDN, such as adaptability, programmability and cost-effectiveness make it suitable for bandwidth-intensive multimedia applications such as live video streaming, 3D/HD video and video gaming. However, the delivery of multimedia services over SDN/NFV networks to achieve optimized QoE, and the overall QoE-centric network resource management remain an open question especially in the advent development of future softwarized networks. The work in this thesis intends to investigate, design and develop novel approaches for QoE-centric control and management of multimedia services (with a focus on video streaming services) over software defined and virtualized networks. First, a video quality management scheme based on the traffic intensity under Dynamic Adaptive Video Streaming over HTTP (DASH) using SDN is developed. The proposed scheme can mitigate virtual port queue congestion which may cause buffering or stalling events during video streaming, thus, reducing the video quality. A QoE-driven resource allocation mechanism is designed and developed for improving the end user’s QoE for video streaming services. The aim of this approach is to find the best combination of network node functions that can provide an optimized QoE level to end-users through network node cooperation. Furthermore, a novel QoE-centric management scheme is proposed and developed, which utilizes Multipath TCP (MPTCP) and Segment Routing (SR) to enhance QoE for video streaming services over SDN/NFV-based networks. The goal of this strategy is to enable service providers to route network traffic through multiple disjointed bandwidth-satisfying paths and meet specific service QoE guarantees to the end-users. Extensive experiments demonstrated that the proposed schemes in this work improve the video quality significantly compared with the state-of-the- art approaches. The thesis further proposes the path protections and link failure-free MPTCP/SR-based architecture that increases survivability, resilience, availability and robustness of future networks. The proposed path protection and dynamic link recovery scheme achieves a minimum time to recover from a failed link and avoids link congestion in softwarized networks

    Secure Data Communication in Mobile Ad Hoc Networks

    Get PDF
    We address the problem of secure and fault-tolerant communication in the presence of adversaries across a multihop wireless network with frequently changing topology. To effectively cope with arbitrary malicious disruption of data transmissions, we propose and evaluate the secure message transmission (SMT) protocol and its alternative, the secure single-path (SSP) protocol. Among the salient features of SMT and SSP is their ability to operate solely in an end-to-end manner and without restrictive assumptions on the network trust and security associations. As a result, the protocols are applicable to a wide range of network architectures.We demonstrate that highly reliable communication can be sustained with small delay and small delay variability, even when a substantial portion of the network nodes systematically or intermittently disrupt communication. SMT and SSP robustly detect transmission failures and continuously configure their operation to avoid and tolerate data loss, and to ensure the availability of communication. This is achieved at the expense of moderate transmission and routing overhead, which can be traded off for delay. Overall, the ability of the protocols to mitigate both malicious and benign faults allows fast and reliable data transport even in highly adverse network environments
    • …
    corecore