60 research outputs found

    Robust Lagrangian and Adversarial Policy Gradient for Robust Constrained Markov Decision Processes

    Full text link
    The robust constrained Markov decision process (RCMDP) is a recent task-modelling framework for reinforcement learning that incorporates behavioural constraints and that provides robustness to errors in the transition dynamics model through the use of an uncertainty set. Simulating RCMDPs requires computing the worst-case dynamics based on value estimates for each state, an approach which has previously been used in the Robust Constrained Policy Gradient (RCPG). Highlighting potential downsides of RCPG such as not robustifying the full constrained objective and the lack of incremental learning, this paper introduces two algorithms, called RCPG with Robust Lagrangian and Adversarial RCPG. RCPG with Robust Lagrangian modifies RCPG by taking the worst-case dynamics based on the Lagrangian rather than either the value or the constraint. Adversarial RCPG also formulates the worst-case dynamics based on the Lagrangian but learns this directly and incrementally as an adversarial policy through gradient descent rather than indirectly and abruptly through constrained optimisation on a sorted value list. A theoretical analysis first derives the Lagrangian policy gradient for the policy optimisation of both proposed algorithms and then the adversarial policy gradient to learn the adversary for Adversarial RCPG. Empirical experiments injecting perturbations in inventory management and safe navigation tasks demonstrate the competitive performance of both algorithms compared to traditional RCPG variants as well as non-robust and non-constrained ablations. In particular, Adversarial RCPG ranks among the top two performing algorithms on all tests

    CCIL: Continuity-based Data Augmentation for Corrective Imitation Learning

    Full text link
    We present a new technique to enhance the robustness of imitation learning methods by generating corrective data to account for compounding errors and disturbances. While existing methods rely on interactive expert labeling, additional offline datasets, or domain-specific invariances, our approach requires minimal additional assumptions beyond access to expert data. The key insight is to leverage local continuity in the environment dynamics to generate corrective labels. Our method first constructs a dynamics model from the expert demonstration, encouraging local Lipschitz continuity in the learned model. In locally continuous regions, this model allows us to generate corrective labels within the neighborhood of the demonstrations but beyond the actual set of states and actions in the dataset. Training on this augmented data enhances the agent's ability to recover from perturbations and deal with compounding errors. We demonstrate the effectiveness of our generated labels through experiments in a variety of robotics domains in simulation that have distinct forms of continuity and discontinuity, including classic control problems, drone flying, navigation with high-dimensional sensor observations, legged locomotion, and tabletop manipulation

    Regret-Based Optimization for Robust Reinforcement Learning

    Full text link
    Deep Reinforcement Learning (DRL) policies have been shown to be vulnerable to small adversarial noise in observations. Such adversarial noise can have disastrous consequences in safety-critical environments. For instance, a self-driving car receiving adversarially perturbed sensory observations about nearby signs (e.g., a stop sign physically altered to be perceived as a speed limit sign) or objects (e.g., cars altered to be recognized as trees) can be fatal. Existing approaches for making RL algorithms robust to an observation-perturbing adversary have focused on reactive approaches that iteratively improve against adversarial examples generated at each iteration. While such approaches have been shown to provide improvements over regular RL methods, they are reactive and can fare significantly worse if certain categories of adversarial examples are not generated during training. To that end, we pursue a more proactive approach that relies on directly optimizing a well-studied robustness measure, regret instead of expected value. We provide a principled approach that minimizes maximum regret over a "neighborhood" of observations to the received "observation". Our regret criterion can be used to modify existing value- and policy-based Deep RL methods. We demonstrate that our approaches provide a significant improvement in performance across a wide variety of benchmarks against leading approaches for robust Deep RL

    GriddlyJS: A Web IDE for Reinforcement Learning

    Get PDF
    Progress in reinforcement learning (RL) research is often driven by the design of new, challenging environments-a costly undertaking requiring skills orthogonal to that of a typical machine learning researcher. The complexity of environment development has only increased with the rise of procedural-content generation (PCG) as the prevailing paradigm for producing varied environments capable of testing the robustness and generalization of RL agents. Moreover, existing environments often require complex build processes, making reproducing results difficult. To address these issues, we introduce GriddlyJS, a web-based Integrated Development Environment (IDE) based on the Griddly engine. GriddlyJS allows researchers to visually design and debug arbitrary, complex PCG grid-world environments using a convenient graphical interface, as well as visualize, evaluate, and record the performance of trained agent models. By connecting the RL workflow to the advanced functionality enabled by modern web standards, GriddlyJS allows publishing interactive agent-environment demos that reproduce experimental results directly to the web. To demonstrate the versatility of GriddlyJS, we use it to quickly develop a complex compositional puzzle-solving environment alongside arbitrary human-designed environment configurations and their solutions for use in automatic curriculum learning and offline RL. The GriddlyJS IDE is open source and freely available at https://griddly.ai

    Feasible Adversarial Robust Reinforcement Learning for Underspecified Environments

    Full text link
    Robust reinforcement learning (RL) considers the problem of learning policies that perform well in the worst case among a set of possible environment parameter values. In real-world environments, choosing the set of possible values for robust RL can be a difficult task. When that set is specified too narrowly, the agent will be left vulnerable to reasonable parameter values unaccounted for. When specified too broadly, the agent will be too cautious. In this paper, we propose Feasible Adversarial Robust RL (FARR), a novel problem formulation and objective for automatically determining the set of environment parameter values over which to be robust. FARR implicitly defines the set of feasible parameter values as those on which an agent could achieve a benchmark reward given enough training resources. By formulating this problem as a two-player zero-sum game, optimizing the FARR objective jointly produces an adversarial distribution over parameter values with feasible support and a policy robust over this feasible parameter set. We demonstrate that approximate Nash equilibria for this objective can be found using a variation of the PSRO algorithm. Furthermore, we show that an optimal agent trained with FARR is more robust to feasible adversarial parameter selection than with existing minimax, domain-randomization, and regret objectives in a parameterized gridworld and three MuJoCo control environments.Comment: Added new theory sections. Added comparison to self-play. Added adversary mixed-strategy analysi

    Observational Robustness and Invariances in Reinforcement Learning via Lexicographic Objectives

    Full text link
    Policy robustness in Reinforcement Learning (RL) may not be desirable at any price; the alterations caused by robustness requirements from otherwise optimal policies should be explainable and quantifiable. Policy gradient algorithms that have strong convergence guarantees are usually modified to obtain robust policies in ways that do not preserve algorithm guarantees, which defeats the purpose of formal robustness requirements. In this work we study a notion of robustness in partially observable MDPs where state observations are perturbed by a noise-induced stochastic kernel. We characterise the set of policies that are maximally robust by analysing how the policies are altered by this kernel. We then establish a connection between such robust policies and certain properties of the noise kernel, as well as with structural properties of the underlying MDPs, constructing sufficient conditions for policy robustness. We use these notions to propose a robustness-inducing scheme, applicable to any policy gradient algorithm, to formally trade off the reward achieved by a policy with its robustness level through lexicographic optimisation, which preserves convergence properties of the original algorithm. We test the the proposed approach through numerical experiments on safety-critical RL environments, and show how the proposed method helps achieve high robustness when state errors are introduced in the policy roll-out
    corecore