982 research outputs found

    The Effect Of Acoustic Variability On Automatic Speaker Recognition Systems

    Get PDF
    This thesis examines the influence of acoustic variability on automatic speaker recognition systems (ASRs) with three aims. i. To measure ASR performance under 5 commonly encountered acoustic conditions; ii. To contribute towards ASR system development with the provision of new research data; iii. To assess ASR suitability for forensic speaker comparison (FSC) application and investigative/pre-forensic use. The thesis begins with a literature review and explanation of relevant technical terms. Five categories of research experiments then examine ASR performance, reflective of conditions influencing speech quantity (inhibitors) and speech quality (contaminants), acknowledging quality often influences quantity. Experiments pertain to: net speech duration, signal to noise ratio (SNR), reverberation, frequency bandwidth and transcoding (codecs). The ASR system is placed under scrutiny with examination of settings and optimum conditions (e.g. matched/unmatched test audio and speaker models). Output is examined in relation to baseline performance and metrics assist in informing if ASRs should be applied to suboptimal audio recordings. Results indicate that modern ASRs are relatively resilient to low and moderate levels of the acoustic contaminants and inhibitors examined, whilst remaining sensitive to higher levels. The thesis provides discussion on issues such as the complexity and fragility of the speech signal path, speaker variability, difficulty in measuring conditions and mitigation (thresholds and settings). The application of ASRs to casework is discussed with recommendations, acknowledging the different modes of operation (e.g. investigative usage) and current UK limitations regarding presenting ASR output as evidence in criminal trials. In summary, and in the context of acoustic variability, the thesis recommends that ASRs could be applied to pre-forensic cases, accepting extraneous issues endure which require governance such as validation of method (ASR standardisation) and population data selection. However, ASRs remain unsuitable for broad forensic application with many acoustic conditions causing irrecoverable speech data loss contributing to high error rates

    Multibiometric security in wireless communication systems

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 05/08/2010.This thesis has aimed to explore an application of Multibiometrics to secured wireless communications. The medium of study for this purpose included Wi-Fi, 3G, and WiMAX, over which simulations and experimental studies were carried out to assess the performance. In specific, restriction of access to authorized users only is provided by a technique referred to hereafter as multibiometric cryptosystem. In brief, the system is built upon a complete challenge/response methodology in order to obtain a high level of security on the basis of user identification by fingerprint and further confirmation by verification of the user through text-dependent speaker recognition. First is the enrolment phase by which the database of watermarked fingerprints with memorable texts along with the voice features, based on the same texts, is created by sending them to the server through wireless channel. Later is the verification stage at which claimed users, ones who claim are genuine, are verified against the database, and it consists of five steps. Initially faced by the identification level, one is asked to first present one’s fingerprint and a memorable word, former is watermarked into latter, in order for system to authenticate the fingerprint and verify the validity of it by retrieving the challenge for accepted user. The following three steps then involve speaker recognition including the user responding to the challenge by text-dependent voice, server authenticating the response, and finally server accepting/rejecting the user. In order to implement fingerprint watermarking, i.e. incorporating the memorable word as a watermark message into the fingerprint image, an algorithm of five steps has been developed. The first three novel steps having to do with the fingerprint image enhancement (CLAHE with 'Clip Limit', standard deviation analysis and sliding neighborhood) have been followed with further two steps for embedding, and extracting the watermark into the enhanced fingerprint image utilising Discrete Wavelet Transform (DWT). In the speaker recognition stage, the limitations of this technique in wireless communication have been addressed by sending voice feature (cepstral coefficients) instead of raw sample. This scheme is to reap the advantages of reducing the transmission time and dependency of the data on communication channel, together with no loss of packet. Finally, the obtained results have verified the claims

    An application of an auditory periphery model in speaker identification

    Get PDF
    The number of applications of automatic Speaker Identification (SID) is growing due to the advanced technologies for secure access and authentication in services and devices. In 2016, in a study, the Cascade of Asymmetric Resonators with Fast Acting Compression (CAR FAC) cochlear model achieved the best performance among seven recent cochlear models to fit a set of human auditory physiological data. Motivated by the performance of the CAR-FAC, I apply this cochlear model in an SID task for the first time to produce a similar performance to a human auditory system. This thesis investigates the potential of the CAR-FAC model in an SID task. I investigate the capability of the CAR-FAC in text-dependent and text-independent SID tasks. This thesis also investigates contributions of different parameters, nonlinearities, and stages of the CAR-FAC that enhance SID accuracy. The performance of the CAR-FAC is compared with another recent cochlear model called the Auditory Nerve (AN) model. In addition, three FFT-based auditory features – Mel frequency Cepstral Coefficient (MFCC), Frequency Domain Linear Prediction (FDLP), and Gammatone Frequency Cepstral Coefficient (GFCC), are also included to compare their performance with cochlear features. This comparison allows me to investigate a better front-end for a noise-robust SID system. Three different statistical classifiers: a Gaussian Mixture Model with Universal Background Model (GMM-UBM), a Support Vector Machine (SVM), and an I-vector were used to evaluate the performance. These statistical classifiers allow me to investigate nonlinearities in the cochlear front-ends. The performance is evaluated under clean and noisy conditions for a wide range of noise levels. Techniques to improve the performance of a cochlear algorithm are also investigated in this thesis. It was found that the application of a cube root and DCT on cochlear output enhances the SID accuracy substantially

    Open-set Speaker Identification

    Get PDF
    This study is motivated by the growing need for effective extraction of intelligence and evidence from audio recordings in the fight against crime, a need made ever more apparent with the recent expansion of criminal and terrorist organisations. The main focus is to enhance open-set speaker identification process within the speaker identification systems, which are affected by noisy audio data obtained under uncontrolled environments such as in the street, in restaurants or other places of businesses. Consequently, two investigations are initially carried out including the effects of environmental noise on the accuracy of open-set speaker recognition, which thoroughly cover relevant conditions in the considered application areas, such as variable training data length, background noise and real world noise, and the effects of short and varied duration reference data in open-set speaker recognition. The investigations led to a novel method termed “vowel boosting” to enhance the reliability in speaker identification when operating with varied duration speech data under uncontrolled conditions. Vowels naturally contain more speaker specific information. Therefore, by emphasising this natural phenomenon in speech data, it enables better identification performance. The traditional state-of-the-art GMM-UBMs and i-vectors are used to evaluate “vowel boosting”. The proposed approach boosts the impact of the vowels on the speaker scores, which improves the recognition accuracy for the specific case of open-set identification with short and varied duration of speech material

    Robust speaker recognition using both vocal source and vocal tract features estimated from noisy input utterances.

    Get PDF
    Wang, Ning.Thesis (M.Phil.)--Chinese University of Hong Kong, 2007.Includes bibliographical references (leaves 106-115).Abstracts in English and Chinese.Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Introduction to Speech and Speaker Recognition --- p.1Chapter 1.2 --- Difficulties and Challenges of Speaker Authentication --- p.6Chapter 1.3 --- Objectives and Thesis Outline --- p.7Chapter 2 --- Speaker Recognition System --- p.10Chapter 2.1 --- Baseline Speaker Recognition System Overview --- p.10Chapter 2.1.1 --- Feature Extraction --- p.12Chapter 2.1.2 --- Pattern Generation and Classification --- p.24Chapter 2.2 --- Performance Evaluation Metric for Different Speaker Recognition Tasks --- p.30Chapter 2.3 --- Robustness of Speaker Recognition System --- p.30Chapter 2.3.1 --- Speech Corpus: CU2C --- p.30Chapter 2.3.2 --- Noise Database: NOISEX-92 --- p.34Chapter 2.3.3 --- Mismatched Training and Testing Conditions --- p.35Chapter 2.4 --- Summary --- p.37Chapter 3 --- Speaker Recognition System using both Vocal Tract and Vocal Source Features --- p.38Chapter 3.1 --- Speech Production Mechanism --- p.39Chapter 3.1.1 --- Speech Production: An Overview --- p.39Chapter 3.1.2 --- Acoustic Properties of Human Speech --- p.40Chapter 3.2 --- Source-filter Model and Linear Predictive Analysis --- p.44Chapter 3.2.1 --- Source-filter Speech Model --- p.44Chapter 3.2.2 --- Linear Predictive Analysis for Speech Signal --- p.46Chapter 3.3 --- Vocal Tract Features --- p.51Chapter 3.4 --- Vocal Source Features --- p.52Chapter 3.4.1 --- Source Related Features: An Overview --- p.52Chapter 3.4.2 --- Source Related Features: Technical Viewpoints --- p.54Chapter 3.5 --- Effects of Noises on Speech Properties --- p.55Chapter 3.6 --- Summary --- p.61Chapter 4 --- Estimation of Robust Acoustic Features for Speaker Discrimination --- p.62Chapter 4.1 --- Robust Speech Techniques --- p.63Chapter 4.1.1 --- Noise Resilience --- p.64Chapter 4.1.2 --- Speech Enhancement --- p.64Chapter 4.2 --- Spectral Subtractive-Type Preprocessing --- p.65Chapter 4.2.1 --- Noise Estimation --- p.66Chapter 4.2.2 --- Spectral Subtraction Algorithm --- p.66Chapter 4.3 --- LP Analysis of Noisy Speech --- p.67Chapter 4.3.1 --- LP Inverse Filtering: Whitening Process --- p.68Chapter 4.3.2 --- Magnitude Response of All-pole Filter in Noisy Condition --- p.70Chapter 4.3.3 --- Noise Spectral Reshaping --- p.72Chapter 4.4 --- Distinctive Vocal Tract and Vocal Source Feature Extraction . . --- p.73Chapter 4.4.1 --- Vocal Tract Feature Extraction --- p.73Chapter 4.4.2 --- Source Feature Generation Procedure --- p.75Chapter 4.4.3 --- Subband-specific Parameterization Method --- p.79Chapter 4.5 --- Summary --- p.87Chapter 5 --- Speaker Recognition Tasks & Performance Evaluation --- p.88Chapter 5.1 --- Speaker Recognition Experimental Setup --- p.89Chapter 5.1.1 --- Task Description --- p.89Chapter 5.1.2 --- Baseline Experiments --- p.90Chapter 5.1.3 --- Identification and Verification Results --- p.91Chapter 5.2 --- Speaker Recognition using Source-tract Features --- p.92Chapter 5.2.1 --- Source Feature Selection --- p.92Chapter 5.2.2 --- Source-tract Feature Fusion --- p.94Chapter 5.2.3 --- Identification and Verification Results --- p.95Chapter 5.3 --- Performance Analysis --- p.98Chapter 6 --- Conclusion --- p.102Chapter 6.1 --- Discussion and Conclusion --- p.102Chapter 6.2 --- Suggestion of Future Work --- p.10

    Multibiometric security in wireless communication systems

    Get PDF
    This thesis has aimed to explore an application of Multibiometrics to secured wireless communications. The medium of study for this purpose included Wi-Fi, 3G, and WiMAX, over which simulations and experimental studies were carried out to assess the performance. In specific, restriction of access to authorized users only is provided by a technique referred to hereafter as multibiometric cryptosystem. In brief, the system is built upon a complete challenge/response methodology in order to obtain a high level of security on the basis of user identification by fingerprint and further confirmation by verification of the user through text-dependent speaker recognition. First is the enrolment phase by which the database of watermarked fingerprints with memorable texts along with the voice features, based on the same texts, is created by sending them to the server through wireless channel. Later is the verification stage at which claimed users, ones who claim are genuine, are verified against the database, and it consists of five steps. Initially faced by the identification level, one is asked to first present one’s fingerprint and a memorable word, former is watermarked into latter, in order for system to authenticate the fingerprint and verify the validity of it by retrieving the challenge for accepted user. The following three steps then involve speaker recognition including the user responding to the challenge by text-dependent voice, server authenticating the response, and finally server accepting/rejecting the user. In order to implement fingerprint watermarking, i.e. incorporating the memorable word as a watermark message into the fingerprint image, an algorithm of five steps has been developed. The first three novel steps having to do with the fingerprint image enhancement (CLAHE with 'Clip Limit', standard deviation analysis and sliding neighborhood) have been followed with further two steps for embedding, and extracting the watermark into the enhanced fingerprint image utilising Discrete Wavelet Transform (DWT). In the speaker recognition stage, the limitations of this technique in wireless communication have been addressed by sending voice feature (cepstral coefficients) instead of raw sample. This scheme is to reap the advantages of reducing the transmission time and dependency of the data on communication channel, together with no loss of packet. Finally, the obtained results have verified the claims.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Speech Enhancement Exploiting the Source-Filter Model

    Get PDF
    Imagining everyday life without mobile telephony is nowadays hardly possible. Calls are being made in every thinkable situation and environment. Hence, the microphone will not only pick up the user’s speech but also sound from the surroundings which is likely to impede the understanding of the conversational partner. Modern speech enhancement systems are able to mitigate such effects and most users are not even aware of their existence. In this thesis the development of a modern single-channel speech enhancement approach is presented, which uses the divide and conquer principle to combat environmental noise in microphone signals. Though initially motivated by mobile telephony applications, this approach can be applied whenever speech is to be retrieved from a corrupted signal. The approach uses the so-called source-filter model to divide the problem into two subproblems which are then subsequently conquered by enhancing the source (the excitation signal) and the filter (the spectral envelope) separately. Both enhanced signals are then used to denoise the corrupted signal. The estimation of spectral envelopes has quite some history and some approaches already exist for speech enhancement. However, they typically neglect the excitation signal which leads to the inability of enhancing the fine structure properly. Both individual enhancement approaches exploit benefits of the cepstral domain which offers, e.g., advantageous mathematical properties and straightforward synthesis of excitation-like signals. We investigate traditional model-based schemes like Gaussian mixture models (GMMs), classical signal processing-based, as well as modern deep neural network (DNN)-based approaches in this thesis. The enhanced signals are not used directly to enhance the corrupted signal (e.g., to synthesize a clean speech signal) but as so-called a priori signal-to-noise ratio (SNR) estimate in a traditional statistical speech enhancement system. Such a traditional system consists of a noise power estimator, an a priori SNR estimator, and a spectral weighting rule that is usually driven by the results of the aforementioned estimators and subsequently employed to retrieve the clean speech estimate from the noisy observation. As a result the new approach obtains significantly higher noise attenuation compared to current state-of-the-art systems while maintaining a quite comparable speech component quality and speech intelligibility. In consequence, the overall quality of the enhanced speech signal turns out to be superior as compared to state-of-the-art speech ehnahcement approaches.Mobiltelefonie ist aus dem heutigen Leben nicht mehr wegzudenken. Telefonate werden in beliebigen Situationen an beliebigen Orten gefĂŒhrt und dabei nimmt das Mikrofon nicht nur die Sprache des Nutzers auf, sondern auch die UmgebungsgerĂ€usche, welche das VerstĂ€ndnis des GesprĂ€chspartners stark beeinflussen können. Moderne Systeme können durch Sprachverbesserungsalgorithmen solchen Effekten entgegenwirken, dabei ist vielen Nutzern nicht einmal bewusst, dass diese Algorithmen existieren. In dieser Arbeit wird die Entwicklung eines einkanaligen Sprachverbesserungssystems vorgestellt. Der Ansatz setzt auf das Teile-und-herrsche-Verfahren, um störende UmgebungsgerĂ€usche aus Mikrofonsignalen herauszufiltern. Dieses Verfahren kann fĂŒr sĂ€mtliche FĂ€lle angewendet werden, in denen Sprache aus verrauschten Signalen extrahiert werden soll. Der Ansatz nutzt das Quelle-Filter-Modell, um das ursprĂŒngliche Problem in zwei Unterprobleme aufzuteilen, die anschließend gelöst werden, indem die Quelle (das Anregungssignal) und das Filter (die spektrale EinhĂŒllende) separat verbessert werden. Die verbesserten Signale werden gemeinsam genutzt, um das gestörte Mikrofonsignal zu entrauschen. Die SchĂ€tzung von spektralen EinhĂŒllenden wurde bereits in der Vergangenheit erforscht und zum Teil auch fĂŒr die Sprachverbesserung angewandt. Typischerweise wird dabei jedoch das Anregungssignal vernachlĂ€ssigt, so dass die spektrale Feinstruktur des Mikrofonsignals nicht verbessert werden kann. Beide AnsĂ€tze nutzen jeweils die Eigenschaften der cepstralen DomĂ€ne, die unter anderem vorteilhafte mathematische Eigenschaften mit sich bringen, sowie die Möglichkeit, Prototypen eines Anregungssignals zu erzeugen. Wir untersuchen modellbasierte AnsĂ€tze, wie z.B. Gaußsche Mischmodelle, klassische signalverarbeitungsbasierte Lösungen und auch moderne tiefe neuronale Netzwerke in dieser Arbeit. Die so verbesserten Signale werden nicht direkt zur Sprachsignalverbesserung genutzt (z.B. Sprachsynthese), sondern als sogenannter A-priori-Signal-zu-Rauschleistungs-SchĂ€tzwert in einem traditionellen statistischen Sprachverbesserungssystem. Dieses besteht aus einem Störleistungs-SchĂ€tzer, einem A-priori-Signal-zu-Rauschleistungs-SchĂ€tzer und einer spektralen Gewichtungsregel, die ĂŒblicherweise mit Hilfe der Ergebnisse der beiden SchĂ€tzer berechnet wird. Schließlich wird eine SchĂ€tzung des sauberen Sprachsignals aus der Mikrofonaufnahme gewonnen. Der neue Ansatz bietet eine signifikant höhere DĂ€mpfung des StörgerĂ€uschs als der bisherige Stand der Technik. Dabei wird eine vergleichbare QualitĂ€t der Sprachkomponente und der SprachverstĂ€ndlichkeit gewĂ€hrleistet. Somit konnte die GesamtqualitĂ€t des verbesserten Sprachsignals gegenĂŒber dem Stand der Technik erhöht werden

    Binaural scene analysis : localization, detection and recognition of speakers in complex acoustic scenes

    Get PDF
    The human auditory system has the striking ability to robustly localize and recognize a specific target source in complex acoustic environments while ignoring interfering sources. Surprisingly, this remarkable capability, which is referred to as auditory scene analysis, is achieved by only analyzing the waveforms reaching the two ears. Computers, however, are presently not able to compete with the performance achieved by the human auditory system, even in the restricted paradigm of confronting a computer algorithm based on binaural signals with a highly constrained version of auditory scene analysis, such as localizing a sound source in a reverberant environment or recognizing a speaker in the presence of interfering noise. In particular, the problem of focusing on an individual speech source in the presence of competing speakers, termed the cocktail party problem, has been proven to be extremely challenging for computer algorithms. The primary objective of this thesis is the development of a binaural scene analyzer that is able to jointly localize, detect and recognize multiple speech sources in the presence of reverberation and interfering noise. The processing of the proposed system is divided into three main stages: localization stage, detection of speech sources, and recognition of speaker identities. The only information that is assumed to be known a priori is the number of target speech sources that are present in the acoustic mixture. Furthermore, the aim of this work is to reduce the performance gap between humans and machines by improving the performance of the individual building blocks of the binaural scene analyzer. First, a binaural front-end inspired by auditory processing is designed to robustly determine the azimuth of multiple, simultaneously active sound sources in the presence of reverberation. The localization model builds on the supervised learning of azimuthdependent binaural cues, namely interaural time and level differences. Multi-conditional training is performed to incorporate the uncertainty of these binaural cues resulting from reverberation and the presence of competing sound sources. Second, a speech detection module that exploits the distinct spectral characteristics of speech and noise signals is developed to automatically select azimuthal positions that are likely to correspond to speech sources. Due to the established link between the localization stage and the recognition stage, which is realized by the speech detection module, the proposed binaural scene analyzer is able to selectively focus on a predefined number of speech sources that are positioned at unknown spatial locations, while ignoring interfering noise sources emerging from other spatial directions. Third, the speaker identities of all detected speech sources are recognized in the final stage of the model. To reduce the impact of environmental noise on the speaker recognition performance, a missing data classifier is combined with the adaptation of speaker models using a universal background model. This combination is particularly beneficial in nonstationary background noise

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes
    • 

    corecore