28,475 research outputs found

    Good Features to Correlate for Visual Tracking

    Full text link
    During the recent years, correlation filters have shown dominant and spectacular results for visual object tracking. The types of the features that are employed in these family of trackers significantly affect the performance of visual tracking. The ultimate goal is to utilize robust features invariant to any kind of appearance change of the object, while predicting the object location as properly as in the case of no appearance change. As the deep learning based methods have emerged, the study of learning features for specific tasks has accelerated. For instance, discriminative visual tracking methods based on deep architectures have been studied with promising performance. Nevertheless, correlation filter based (CFB) trackers confine themselves to use the pre-trained networks which are trained for object classification problem. To this end, in this manuscript the problem of learning deep fully convolutional features for the CFB visual tracking is formulated. In order to learn the proposed model, a novel and efficient backpropagation algorithm is presented based on the loss function of the network. The proposed learning framework enables the network model to be flexible for a custom design. Moreover, it alleviates the dependency on the network trained for classification. Extensive performance analysis shows the efficacy of the proposed custom design in the CFB tracking framework. By fine-tuning the convolutional parts of a state-of-the-art network and integrating this model to a CFB tracker, which is the top performing one of VOT2016, 18% increase is achieved in terms of expected average overlap, and tracking failures are decreased by 25%, while maintaining the superiority over the state-of-the-art methods in OTB-2013 and OTB-2015 tracking datasets.Comment: Accepted version of IEEE Transactions on Image Processin

    Visual object tracking performance measures revisited

    Get PDF
    The problem of visual tracking evaluation is sporting a large variety of performance measures, and largely suffers from lack of consensus about which measures should be used in experiments. This makes the cross-paper tracker comparison difficult. Furthermore, as some measures may be less effective than others, the tracking results may be skewed or biased towards particular tracking aspects. In this paper we revisit the popular performance measures and tracker performance visualizations and analyze them theoretically and experimentally. We show that several measures are equivalent from the point of information they provide for tracker comparison and, crucially, that some are more brittle than the others. Based on our analysis we narrow down the set of potential measures to only two complementary ones, describing accuracy and robustness, thus pushing towards homogenization of the tracker evaluation methodology. These two measures can be intuitively interpreted and visualized and have been employed by the recent Visual Object Tracking (VOT) challenges as the foundation for the evaluation methodology

    Beyond standard benchmarks: Parameterizing performance evaluation in visual object tracking

    Get PDF
    Object-to-camera motion produces a variety of apparent motion patterns that significantly affect performance of short-term visual trackers. Despite being crucial for designing robust trackers, their influence is poorly explored in standard benchmarks due to weakly defined, biased and overlapping attribute annotations. In this paper we propose to go beyond pre-recorded benchmarks with post-hoc annotations by presenting an approach that utilizes omnidirectional videos to generate realistic, consistently annotated, short-term tracking scenarios with exactly parameterized motion patterns. We have created an evaluation system, constructed a fully annotated dataset of omnidirectional videos and the generators for typical motion patterns. We provide an in-depth analysis of major tracking paradigms which is complementary to the standard benchmarks and confirms the expressiveness of our evaluation approach

    Understanding and Diagnosing Visual Tracking Systems

    Full text link
    Several benchmark datasets for visual tracking research have been proposed in recent years. Despite their usefulness, whether they are sufficient for understanding and diagnosing the strengths and weaknesses of different trackers remains questionable. To address this issue, we propose a framework by breaking a tracker down into five constituent parts, namely, motion model, feature extractor, observation model, model updater, and ensemble post-processor. We then conduct ablative experiments on each component to study how it affects the overall result. Surprisingly, our findings are discrepant with some common beliefs in the visual tracking research community. We find that the feature extractor plays the most important role in a tracker. On the other hand, although the observation model is the focus of many studies, we find that it often brings no significant improvement. Moreover, the motion model and model updater contain many details that could affect the result. Also, the ensemble post-processor can improve the result substantially when the constituent trackers have high diversity. Based on our findings, we put together some very elementary building blocks to give a basic tracker which is competitive in performance to the state-of-the-art trackers. We believe our framework can provide a solid baseline when conducting controlled experiments for visual tracking research
    corecore