2,129 research outputs found

    Efficient Asymmetric Co-Tracking using Uncertainty Sampling

    Full text link
    Adaptive tracking-by-detection approaches are popular for tracking arbitrary objects. They treat the tracking problem as a classification task and use online learning techniques to update the object model. However, these approaches are heavily invested in the efficiency and effectiveness of their detectors. Evaluating a massive number of samples for each frame (e.g., obtained by a sliding window) forces the detector to trade the accuracy in favor of speed. Furthermore, misclassification of borderline samples in the detector introduce accumulating errors in tracking. In this study, we propose a co-tracking based on the efficient cooperation of two detectors: a rapid adaptive exemplar-based detector and another more sophisticated but slower detector with a long-term memory. The sampling labeling and co-learning of the detectors are conducted by an uncertainty sampling unit, which improves the speed and accuracy of the system. We also introduce a budgeting mechanism which prevents the unbounded growth in the number of examples in the first detector to maintain its rapid response. Experiments demonstrate the efficiency and effectiveness of the proposed tracker against its baselines and its superior performance against state-of-the-art trackers on various benchmark videos.Comment: Submitted to IEEE ICSIPA'201

    Active Collaboration of Classifiers for Visual Tracking

    Get PDF
    Recently, discriminative visual trackers obtain state-of-the-art performance, yet they suffer in the presence of different real-world challenges such as target motion and appearance changes. In a discriminative tracker, one or more classifiers are employed to obtain the target/nontarget label for the samples, which in turn determine the target’s location. To cope with variations of the target shape and appearance, the classifier(s) are updated online with different samples of the target and the background. Sample selection, labeling, and updating the classifier are prone to various sources of errors that drift the tracker. In this study, we motivate, conceptualize, realize, and formalize a novel active co-tracking framework, step by step to demonstrate the challenges and generic solutions for them. In this framework, not only classifiers cooperate in labeling the samples but also exchange their information to robustify the labeling, improve the sampling, and realize efficient yet effective updating. The proposed framework is evaluated against state-of-the-art trackers on public dataset and showed promising results

    Efficient Diverse Ensemble for Discriminative Co-Tracking

    Full text link
    Ensemble discriminative tracking utilizes a committee of classifiers, to label data samples, which are in turn, used for retraining the tracker to localize the target using the collective knowledge of the committee. Committee members could vary in their features, memory update schemes, or training data, however, it is inevitable to have committee members that excessively agree because of large overlaps in their version space. To remove this redundancy and have an effective ensemble learning, it is critical for the committee to include consistent hypotheses that differ from one-another, covering the version space with minimum overlaps. In this study, we propose an online ensemble tracker that directly generates a diverse committee by generating an efficient set of artificial training. The artificial data is sampled from the empirical distribution of the samples taken from both target and background, whereas the process is governed by query-by-committee to shrink the overlap between classifiers. The experimental results demonstrate that the proposed scheme outperforms conventional ensemble trackers on public benchmarks.Comment: CVPR 2018 Submissio
    • …
    corecore