1,660 research outputs found

    Perceptual Video Hashing for Content Identification and Authentication

    Get PDF
    Perceptual hashing has been broadly used in the literature to identify similar contents for video copy detection. It has also been adopted to detect malicious manipulations for video authentication. However, targeting both applications with a single system using the same hash would be highly desirable as this saves the storage space and reduces the computational complexity. This paper proposes a perceptual video hashing system for content identification and authentication. The objective is to design a hash extraction technique that can withstand signal processing operations on one hand and detect malicious attacks on the other hand. The proposed system relies on a new signal calibration technique for extracting the hash using the discrete cosine transform (DCT) and the discrete sine transform (DST). This consists of determining the number of samples, called the normalizing shift, that is required for shifting a digital signal so that the shifted version matches a certain pattern according to DCT/DST coefficients. The rationale for the calibration idea is that the normalizing shift resists signal processing operations while it exhibits sensitivity to local tampering (i.e., replacing a small portion of the signal with a different one). While the same hash serves both applications, two different similarity measures have been proposed for video identification and authentication, respectively. Through intensive experiments with various types of video distortions and manipulations, the proposed system has been shown to outperform related state-of-the art video hashing techniques in terms of identification and authentication with the advantageous ability to locate tampered regions

    Perceptual Video Hashing for Content Identification and Authentication

    Full text link

    Engineering systematic musicology : methods and services for computational and empirical music research

    Get PDF
    One of the main research questions of *systematic musicology* is concerned with how people make sense of their musical environment. It is concerned with signification and meaning-formation and relates musical structures to effects of music. These fundamental aspects can be approached from many different directions. One could take a cultural perspective where music is considered a phenomenon of human expression, firmly embedded in tradition. Another approach would be a cognitive perspective, where music is considered as an acoustical signal of which perception involves categorizations linked to representations and learning. A performance perspective where music is the outcome of human interaction is also an equally valid view. To understand a phenomenon combining multiple perspectives often makes sense. The methods employed within each of these approaches turn questions into concrete musicological research projects. It is safe to say that today many of these methods draw upon digital data and tools. Some of those general methods are feature extraction from audio and movement signals, machine learning, classification and statistics. However, the problem is that, very often, the *empirical and computational methods require technical solutions* beyond the skills of researchers that typically have a humanities background. At that point, these researchers need access to specialized technical knowledge to advance their research. My PhD-work should be seen within the context of that tradition. In many respects I adopt a problem-solving attitude to problems that are posed by research in systematic musicology. This work *explores solutions that are relevant for systematic musicology*. It does this by engineering solutions for measurement problems in empirical research and developing research software which facilitates computational research. These solutions are placed in an engineering-humanities plane. The first axis of the plane contrasts *services* with *methods*. Methods *in* systematic musicology propose ways to generate new insights in music related phenomena or contribute to how research can be done. Services *for* systematic musicology, on the other hand, support or automate research tasks which allow to change the scope of research. A shift in scope allows researchers to cope with larger data sets which offers a broader view on the phenomenon. The second axis indicates how important Music Information Retrieval (MIR) techniques are in a solution. MIR-techniques are contrasted with various techniques to support empirical research. My research resulted in a total of thirteen solutions which are placed in this plane. The description of seven of these are bundled in this dissertation. Three fall into the methods category and four in the services category. For example Tarsos presents a method to compare performance practice with theoretical scales on a large scale. SyncSink is an example of a service

    Indoor Localization for Fire Safety : A brief overview of fundamentals, needs and requirements and applications

    Get PDF
    An indoor localization system for positioning evacuating people can be anticipated to increase the chances of a safe evacuation and effective rescue intervention in case of a tunnel fire. Such a system may utilize prevalent wireless technologies, e.g., Bluetooth, RFID and Wi-Fi, which today are used to survey incoming and outgoing traffic to a certain space or location, to estimate group sizes and to measure the duration of visits during normal operation of buildings. Examples also exist of where the same wireless technologies are used for safety purposes, for example to assess real-time location, tracking and monitoring of vehicles, personnel and equipment in mining environments. However, they are relatively few, and typically rely on a high degree of control over the people that are to be tracked, and their association with (connection to) the localization system used for the tracking. In this report, the results of a brief overview of the literature within the field of indoor localization in general, and the application of indoor localization systems within the field of particularly fire safety, is summarized. This information forms the underlying basis for the planning and execution of a future field study, in which an indoor Wi-Fi localization system will be tested and evaluated in terms of if, and if so how, it can be used to position evacuating people in tunnels. Whereas such a system allows digital footprints to be collected within a wireless network infrastructure (also already existing ones), questions remains to be answered regarding aspects such as precision and accuracy, and furthermore, how these aspects are affected by other independent variables. In the end of this report, examples of research questions deemed necessary to answer in order to enable a sound evaluation of the system is presented. These need to be addressed in the future planning of the above-mentioned field study

    Data Hiding and Its Applications

    Get PDF
    Data hiding techniques have been widely used to provide copyright protection, data integrity, covert communication, non-repudiation, and authentication, among other applications. In the context of the increased dissemination and distribution of multimedia content over the internet, data hiding methods, such as digital watermarking and steganography, are becoming increasingly relevant in providing multimedia security. The goal of this book is to focus on the improvement of data hiding algorithms and their different applications (both traditional and emerging), bringing together researchers and practitioners from different research fields, including data hiding, signal processing, cryptography, and information theory, among others
    • …
    corecore