14,838 research outputs found

    Application of a Combined Active Control and Fault Detection Scheme to an Active Composite Flexible Structure.

    Get PDF
    In this paper, the problem of increasing reliability of active control procedure is considered. Indeed, a design method of rejection perturbation in presence of potentially faults, on a flexible structure with integrated piezo-ceramics, is presented. The piezo-ceramics are used as actuators and sensors. A single unit based solution, which handles both control action and fault diagnosis is proposed. The algorithm uses H∞ optimization techniques. A full order model of the structure is first obtained via both finite-element (FE) approach and identification procedure. This model is then reduced in order to be used in our robust approach. By a suitable choice of weightings functions, the provided method is able to reject disturbance robustly and to estimate occurred faults. The case of sensors and actuators faults is discussed. The choice of weightings for diagnosis and control systems is also tackled. Finally, the effectiveness of this integrated method is confirmed by both simulation and experimental results

    Fast design space exploration of vibration-based energy harvesting wireless sensors

    No full text
    An energy-harvester-powered wireless sensor node is a complicated system with many design parameters. To investigate the various trade-offs among these parameters, it is desirable to explore the multi-dimensional design space quickly. However, due to the large number of parameters and costly simulation CPU times, it is often difficult or even impossible to explore the design space via simulation. This paper presents a response surface model (RSM) based technique for fast design space exploration of a complete wireless sensor node powered by a tunable energy harvester. As a proof of concept, a software toolkit has been developed which implements the proposed design flow and incorporates either real data or parametrized models of the vibration source, the energy harvester, tuning controller and wireless sensor node. Several test scenarios are considered, which illustrate how the proposed approach permits the designer to adjust a wide range of system parameters and evaluate the effect almost instantly but still with high accuracy. In the developed toolkit, the estimated CPU time of one RSM estimation is 25s and the average RSM estimation error is less than 16.5

    Synchronous motion of two vertically excited planar elastic pendula

    Get PDF
    The dynamics of two planar elastic pendula mounted on the horizontally excited platform have been studied. We give evidence that the pendula can exhibit synchronous oscillatory and rotation motion and show that stable in-phase and anti-phase synchronous states always co-exist. The complete bifurcational scenario leading from synchronous to asynchronous motion is shown. We argue that our results are robust as they exist in the wide range of the system parameters.Comment: Submitte

    A comparison between different optimization criteria for tuned mass dampers design

    Get PDF
    Tuned mass sampers (TMDs) are widely used strategies for vibration control in many engineering applications, so that many TMD optimization criteria have been proposed till now. However, they normally consider only TMD stiffness and damping as design variables and assume that the tuned mass is a pre-selected value. In this work a more complete approach is proposed and then also TMD mass ratio is optimized. A standard single degree of freedom system is investigated to evaluate TMD protection efficiency in case of excitation at the support. More precisely, this model is used to develop two different optimizations criteria which minimize the main system displacement or the inertial acceleration. Different environmental conditions described by various char- acterizations of the input, here modelled by a stationary filtered stochastic process, are considered. Results show that all solutions obtained considering also the mass of the TMD as design variable are more efficient if compared with those obtained without it. However, in many cases these solutions are inappropriate because the optimal TMD mass is greater than real admissible values in practical technical applications for civil and mechanical engineering. Anyway, one can deduce that there are some interesting indications for applications in some actual contexts. In fact, the results show that there are some ranges of environmental parameters ranges where results attained by the displacement criterion are compatible with real applications requiring some percent of main system mass. Finally, the present research gives promising indications for complete TMD optimization application in emerging technical contexts, as micro- mechanical devices and nano resonant beam

    Nonlinear dynamic analysis of an optimal particle damper

    Full text link
    We study the dynamical behavior of a single degree of freedom mechanical system with a particle damper. The particle (granular) damping was optimized for the primary system operating condition by using an appropriate gap size for a prismatic enclosure. The particles absorb the kinetic energy of the vibrating structure and convert it into heat through the inelastic collisions and friction. This results in a highly nonlinear mechanical system. Considering linear signal analysis, state space reconstruction, Poincar\'e sections and the determination of maximal Lyapunov exponents, the motion of the granular system inside the enclosure is characterized for a wide frequency range. With the excitation frequency as control parameter, either regular and chaotic motion of the granular bed are found and their influence on the damping is analyzed.Comment: 18 pages, 8 figures. arXiv admin note: text overlap with arXiv:1105.030

    Robust saturated control of human-induced floor vibrations via a proof-mass actuator

    Get PDF
    This paper is concerned with the design of a robust active vibration control system that makes use of a proof-mass actuator for the mitigation of human-induced vibrations in floor structures. Ideally, velocity feedback control (VFC) is unconditionally stable and robust to spillover effects, interlacing of poles and zeros of collocated control is then accomplished. However, the use of a proof-mass actuator influences the system dynamics and the alternating pole-zero pattern of the system formed by the actuator and structure is no longer fulfilled. However, a controlled migration of the two zeros of the root locus plot at the origin, resulting from the acceleration output, can be achieved by adding a feed-through term (FTT) to the structure acceleration output. That is, the FTT enables us to control the position of a pair of complex conjugate zeros (an anti-resonance in the frequency domain). This paper proposes the introduction of an FTT designed in such a way that the anti-resonance at the origin is located between the actuator resonance and the structure fundamental resonance. Hence, an integral controller leads to infinite gain margin and significant phase margin. Simulation and experimental results on a concrete slab strip have validated the proposed control strategy. Significant improvements in the stability properties compared with VFC are reported

    Generalizing Negative Imaginary Systems Theory to Include Free Body Dynamics: Control of Highly Resonant Structures with Free Body Motion

    Full text link
    Negative imaginary (NI) systems play an important role in the robust control of highly resonant flexible structures. In this paper, a generalized NI system framework is presented. A new NI system definition is given, which allows for flexible structure systems with colocated force actuators and position sensors, and with free body motion. This definition extends the existing definitions of NI systems. Also, necessary and sufficient conditions are provided for the stability of positive feedback control systems where the plant is NI according to the new definition and the controller is strictly negative imaginary. The stability conditions in this paper are given purely in terms of properties of the plant and controller transfer function matrices, although the proofs rely on state space techniques. Furthermore, the stability conditions given are independent of the plant and controller system order. As an application of these results, a case study involving the control of a flexible robotic arm with a piezo-electric actuator and sensor is presented
    corecore