1,192 research outputs found

    Robust control of the distributed solar collector field ACUREX using MPC for tracking

    Get PDF
    17th IFAC World Congress 2008. Seoul (Korea). 06/07/2008This paper presents the application of a robust model predictive control for tracking of piece-wise constant references (RMPCT) to a distributed collector field, ACUREX, at the solar power plant of PSA (Solar Plant of Almería). The main characteristic of a solar power plant is that the primary energy source, solar radiation, cannot be manipulated. Solar radiation varies throughout the day, causing changes in plant dynamics and strong disturbances in the process. The real plant is assumed to be modeled as a linear system with additive bounded uncertainties on the states. Under mild assumptions, the proposed RMPCT can steer the uncertain system in an admissible evolution to any admissible steady state, that is, under any change of the set point. This allows us to reject constant disturbances compensating the effect of then changing the setpoint

    On the design of Robust tube-based MPC for tracking

    Get PDF
    17th IFAC World Congress (IFAC'08)Seoul, Korea, July 6-11This paper deals with the design procedure of the recently presented robust MPC for tracking of constrained linear systems with additive disturbances. This controller is based on nominal predictions and it is capable to steer the nominal predicted trajectory to any target admissible steady state, that is retaining feasibility under any set point change. By means of the notion of tube of trajectories, robust stability and convergence is achieved. The controller formulation has some parameters which provides extra degrees of freedom to the design procedure of the predictive controller. These allow to deal with control objectives such as disturbance rejection, output offset prioritization or enlargement of the domain of attraction. In this paper, output prioritization method, LMI based design procedures and algorithms for the calculation of invariant sets are presented. The proposed enhanced design of the MPC is demonstrated by an illustrative example

    Learning-based predictive control for linear systems: a unitary approach

    Full text link
    A comprehensive approach addressing identification and control for learningbased Model Predictive Control (MPC) for linear systems is presented. The design technique yields a data-driven MPC law, based on a dataset collected from the working plant. The method is indirect, i.e. it relies on a model learning phase and a model-based control design one, devised in an integrated manner. In the model learning phase, a twofold outcome is achieved: first, different optimal p-steps ahead prediction models are obtained, to be used in the MPC cost function; secondly, a perturbed state-space model is derived, to be used for robust constraint satisfaction. Resorting to Set Membership techniques, a characterization of the bounded model uncertainties is obtained, which is a key feature for a successful application of the robust control algorithm. In the control design phase, a robust MPC law is proposed, able to track piece-wise constant reference signals, with guaranteed recursive feasibility and convergence properties. The controller embeds multistep predictors in the cost function, it ensures robust constraints satisfaction thanks to the learnt uncertainty model, and it can deal with possibly unfeasible reference values. The proposed approach is finally tested in a numerical example

    Safe and Fast Tracking on a Robot Manipulator: Robust MPC and Neural Network Control

    Full text link
    Fast feedback control and safety guarantees are essential in modern robotics. We present an approach that achieves both by combining novel robust model predictive control (MPC) with function approximation via (deep) neural networks (NNs). The result is a new approach for complex tasks with nonlinear, uncertain, and constrained dynamics as are common in robotics. Specifically, we leverage recent results in MPC research to propose a new robust setpoint tracking MPC algorithm, which achieves reliable and safe tracking of a dynamic setpoint while guaranteeing stability and constraint satisfaction. The presented robust MPC scheme constitutes a one-layer approach that unifies the often separated planning and control layers, by directly computing the control command based on a reference and possibly obstacle positions. As a separate contribution, we show how the computation time of the MPC can be drastically reduced by approximating the MPC law with a NN controller. The NN is trained and validated from offline samples of the MPC, yielding statistical guarantees, and used in lieu thereof at run time. Our experiments on a state-of-the-art robot manipulator are the first to show that both the proposed robust and approximate MPC schemes scale to real-world robotic systems.Comment: 8 pages, 4 figures

    Robust adaptive MPC using control contraction metrics

    Full text link
    We present a robust adaptive model predictive control (MPC) framework for nonlinear continuous-time systems with bounded parametric uncertainty and additive disturbance. We utilize general control contraction metrics (CCMs) to parameterize a homothetic tube around a nominal prediction that contains all uncertain trajectories. Furthermore, we incorporate model adaptation using set-membership estimation. As a result, the proposed MPC formulation is applicable to a large class of nonlinear systems, reduces conservatism during online operation, and guarantees robust constraint satisfaction and convergence to a neighborhood of the desired setpoint. One of the main technical contributions is the derivation of corresponding tube dynamics based on CCMs that account for the state and input dependent nature of the model mismatch. Furthermore, we online optimize over the nominal parameter, which enables general set-membership updates for the parametric uncertainty in the MPC. Benefits of the proposed homothetic tube MPC and online adaptation are demonstrated using a numerical example involving a planar quadrotor.Comment: This is the accepted version of the paper in Automatica, 202

    Analysis and design of model predictive control frameworks for dynamic operation -- An overview

    Full text link
    This article provides an overview of model predictive control (MPC) frameworks for dynamic operation of nonlinear constrained systems. Dynamic operation is often an integral part of the control objective, ranging from tracking of reference signals to the general economic operation of a plant under online changing time-varying operating conditions. We focus on the particular challenges that arise when dealing with such more general control goals and present methods that have emerged in the literature to address these issues. The goal of this article is to present an overview of the state-of-the-art techniques, providing a diverse toolkit to apply and further develop MPC formulations that can handle the challenges intrinsic to dynamic operation. We also critically assess the applicability of the different research directions, discussing limitations and opportunities for further researc
    corecore