260,669 research outputs found

    Robust Transport over Networks

    Get PDF
    We consider transportation over a strongly connected, directed graph. The scheduling amounts to selecting transition probabilities for a discrete-time Markov evolution which is designed to be consistent with initial and final marginal constraints on mass transport. We address the situation where initially the mass is concentrated on certain nodes and needs to be transported over a certain time period to another set of nodes, possibly disjoint from the first. The evolution is selected to be closest to a {\em prior} measure on paths in the relative entropy sense--such a construction is known as a Schroedinger bridge between the two given marginals. It may be viewed as an atypical stochastic control problem where the control consists in suitably modifying the prior transition mechanism. The prior can be chosen to incorporate constraints and costs for traversing specific edges of the graph, but it can also be selected to allocate equal probability to all paths of equal length connecting any two nodes (i.e., a uniform distribution on paths). This latter choice for prior transitions relies on the so-called Ruelle-Bowen random walker and gives rise to scheduling that tends to utilize all paths as uniformly as the topology allows. Thus, this Ruelle-Bowen law (MRB{\mathfrak M}_{\rm RB}) taken as prior, leads to a transportation plan that tends to lessen congestion and ensures a level of robustness. We also show that the distribution MRB{\mathfrak M}_{\rm RB} on paths, which attains the maximum entropy rate for the random walker given by the topological entropy, can itself be obtained as the time-homogeneous solution of a maximum entropy problem for measures on paths (also a Schr\"{o}dinger bridge problem, albeit with prior that is not a probability measure). Finally we show that the paradigm of Schr\"odinger bridges as a mechanism for scheduling transport on networks can be adapted to graphs that are not strongly connected, as well as to weighted graphs. In the latter case, our approach may be used to design a transportation plan which effectively compromises between robustness and other criteria such as cost. Indeed, we explicitly provide a robust transportation plan which assigns {\em maximum probability} to {\em minimum cost paths} and therefore compares favorably with Optimal Mass Transportation strategies

    TCP over CDMA2000 Networks: A Cross-Layer Measurement Study

    Full text link
    Modern cellular channels in 3G networks incorporate sophisticated power control and dynamic rate adaptation which can have significant impact on adaptive transport layer protocols, such as TCP. Though there exists studies that have evaluated the performance of TCP over such networks, they are based solely on observations at the transport layer and hence have no visibility into the impact of lower layer dynamics, which are a key characteristic of these networks. In this work, we present a detailed characterization of TCP behavior based on cross-layer measurement of transport layer, as well as RF and MAC layer parameters. In particular, through a series of active TCP/UDP experiments and measurement of the relevant variables at all three layers, we characterize both, the wireless scheduler and the radio link protocol in a commercial CDMA2000 network and assess their impact on TCP dynamics. Somewhat surprisingly, our findings indicate that the wireless scheduler is mostly insensitive to channel quality and sector load over short timescales and is mainly affected by the transport layer data rate. Furthermore, with the help of a robust correlation measure, Normalized Mutual Information, we were able to quantify the impact of the wireless scheduler and the radio link protocol on various TCP parameters such as the round trip time, throughput and packet loss rate

    Transitions from trees to cycles in adaptive flow networks

    Get PDF
    Transport networks are crucial to the functioning of natural and technological systems. Nature features transport networks that are adaptive over a vast range of parameters, thus providing an impressive level of robustness in supply. Theoretical and experimental studies have found that real-world transport networks exhibit both tree-like motifs and cycles. When the network is subject to load fluctuations, the presence of cyclic motifs may help to reduce flow fluctuations and, thus, render supply in the network more robust. While previous studies considered network topology via optimization principles, here, we take a dynamical systems approach and study a simple model of a flow network with dynamically adapting weights (conductances). We assume a spatially non-uniform distribution of rapidly fluctuating loads in the sinks and investigate what network configurations are dynamically stable. The network converges to a spatially non-uniform stable configuration composed of both cyclic and tree-like structures. Cyclic structures emerge locally in a transcritical bifurcation as the amplitude of the load fluctuations is increased. The resulting adaptive dynamics thus partitions the network into two distinct regions with cyclic and tree-like structures. The location of the boundary between these two regions is determined by the amplitude of the fluctuations. These findings may explain why natural transport networks display cyclic structures in the micro-vascular regions near terminal nodes, but tree-like features in the regions with larger veins

    Efficient robust routing for single commodity network flows

    Get PDF
    We study single commodity network flows with suitable robustness and efficiency specs. An original use of a maximum entropy problem for distributions on the paths of the graph turns this problem into a steering problem for Markov chains with prescribed initial and final marginals. From a computational standpoint, viewing scheduling this way is especially attractive in light of the existence of an iterative algorithm to compute the solution. The present paper builds on [13] by introducing an index of efficiency of a transportation plan and points, accordingly, to efficient-robust transport policies. In developing the theory, we establish two new invariance properties of the solution (called bridge) \u2013 an iterated bridge invariance property and the invariance of the most probable paths. These properties, which were tangentially mentioned in our previous work, are fully developed here. We also show that the distribution on paths of the optimal transport policy, which depends on a \u201ctemperature\u201d parameter, tends to the solution of the \u201cmost economical\u201d but possibly less robust optimal mass transport problem as the temperature goes to zero. The relevance of all of these properties for transport over networks is illustrated in an example

    Quantum phase slips in superconducting Nb nanowire networks deposited on self-assembled Si templates

    Full text link
    Robust porous silicon substrates were employed for generating interconnected networks of superconducting ultrathin Nb nanowires. Scanning electron microscopy analysis was performed to investigate the morphology of the samples, which constitute of polycrystalline single wires with grain size of about 10 nm. The samples exhibit nonzero resistance over a broad temperature range below the critical temperature, fingerprint of phase slippage processes. The transport data are satisfactory reproduced by models describing both thermal and quantum fluctuations of the superconducting order parameter in thin homogeneous superconducting wires.Comment: accepted for publication on Applied Physics Letter

    Robust streaming in delay tolerant networks

    Get PDF
    Delay Tolerant Networks (DTN) do not provide any end to end connectivity guarantee. Thus, transporting data over such networks is a tough challenge as most of Internet applications assume a form of persistent end to end connection. While research in DTN has mainly addressed the problem of routing in various mobility contexts with the aim to improve bundle delay delivery and data delivery ratio, little attention has been paid to applications. This paper investigates the support of streaming-like applications over DTN. We identify how DTN characteristics impact on the overall performances of these applications and present Tetrys, a transport layer mechanism, which enables robust streaming over DTN. Tetrys is based on an on the fly coding mechanism able to ensure full reliability without retransmission and fast in-order bundle delivery in comparison to classical erasure coding schemes. We evaluate our Tetrys prototype on real DTN connectivity traces captured from the Rollerblading tour in Paris. Simulations show that on average, Tetrys clearly outperforms all other reliability schemes in terms of bundles delivery service

    Topological transitions in carbon nanotube networks via nanoscale confinement

    Full text link
    Efforts aimed at large-scale integration of nanoelectronic devices that exploit the superior electronic and mechanical properties of single-walled carbon nanotubes (SWCNTs) remain limited by the difficulties associated with manipulation and packaging of individual SWNTs. Alternative approaches based on ultra-thin carbon nanotube networks (CNNs) have enjoyed success of late with the realization of several scalable device applications. However, precise control over the network electronic transport is challenging due to i) an often uncontrollable interplay between network coverage and its topology and ii) the inherent electrical heterogeneity of the constituent SWNTs. In this letter, we use template-assisted fluidic assembly of SWCNT networks to explore the effect of geometric confinement on the network topology. Heterogeneous SWCNT networks dip-coated onto sub-micron wide ultra-thin polymer channels exhibit a topology that becomes increasingly aligned with decreasing channel width and thickness. Experimental scale coarse-grained computations of interacting SWCNTs show that the effect is a reflection of an aligned topology that is no longer dependent on the network density, which in turn emerges as a robust knob that can induce semiconductor-to-metallic transitions in the network response. Our study demonstrates the effectiveness of directed assembly on channels with varying degrees of confinement as a simple tool to tailor the conductance of the otherwise heterogeneous network, opening up the possibility of robust large-scale CNN-based devices.Comment: 4 pages, 3 figure

    Statistical Analysis of Bus Networks in India

    Full text link
    Through the past decade the field of network science has established itself as a common ground for the cross-fertilization of exciting inter-disciplinary studies which has motivated researchers to model almost every physical system as an interacting network consisting of nodes and links. Although public transport networks such as airline and railway networks have been extensively studied, the status of bus networks still remains in obscurity. In developing countries like India, where bus networks play an important role in day-to-day commutation, it is of significant interest to analyze its topological structure and answer some of the basic questions on its evolution, growth, robustness and resiliency. In this paper, we model the bus networks of major Indian cities as graphs in \textit{L}-space, and evaluate their various statistical properties using concepts from network science. Our analysis reveals a wide spectrum of network topology with the common underlying feature of small-world property. We observe that the networks although, robust and resilient to random attacks are particularly degree-sensitive. Unlike real-world networks, like Internet, WWW and airline, which are virtual, bus networks are physically constrained. The presence of various geographical and economic constraints allow these networks to evolve over time. Our findings therefore, throw light on the evolution of such geographically and socio-economically constrained networks which will help us in designing more efficient networks in the future.Comment: Submitted to PLOS ON
    corecore