17 research outputs found

    Content-Aware Authentication of Motion JPEG2000 Stream in Lossy Networks

    Get PDF

    Joint Source-Channel Coding of JPEG 2000 Image Transmission Over Two-Way Multi-Relay Networks

    Get PDF
    In this paper, we develop a two-way multi-relay scheme for JPEG 2000 image transmission. We adopt a modified time-division broadcast (TDBC) cooperative protocol, and derive its power allocation and relay selection under a fairness constraint. The symbol error probability of the optimal system configuration is then derived. After that, a joint source-channel coding (JSCC) problem is formulated to find the optimal number of JPEG 2000 quality layers for the image and the number of channel coding packets for each JPEG 2000 codeblock that can minimize the reconstructed image distortion for the two users, subject to a rate constraint. Two fast algorithms based on dynamic programming (DP) and branch and bound (BB) are then developed. Simulation demonstrates that the proposed JSCC scheme achieves better performance and lower complexity than other similar transmission systems

    Optimized Transmission of JPEG2000 Streams Over Wireless Channels

    Get PDF
    The transmission of JPEG2000 images over wireless channels is examined using reorganization of the compressed images into error-resilient, product-coded streams. The product-code consists of Turbo-codes and Reed-Solomon codes which are optimized using an iterative process. The generation of the stream to be transmitted is performed directly using compressed JPEG2000 streams. The resulting scheme is tested for the transmission of compressed JPEG2000 images over wireless channels and is shown to outperform other algorithms which were recently proposed for the wireless transmission of images

    Transmission of 3D Scenes over Lossy Channels

    Get PDF
    This paper introduces a novel error correction scheme for the transmission of three-dimensional scenes over unreliable networks. We propose a novel Unequal Error Protection scheme for the transmission of depth and texture information that distributes a prefixed amount of redundancy among the various elements of the scene description in order to maximize the quality of the rendered views. This target is achieved exploiting also a new model for the estimation of the impact on the rendered views of the various geometry and texture packets which takes into account their relevance in the coded bitstream and the viewpoint required by the user. Experimental results show how the proposed scheme effectively enhances the quality of the rendered images in a typical depth-image-based rendering scenario as packets are progressively decoded/recovered by the receiver

    Towards Secure Online Distribution of Multimedia Codestreams

    Get PDF

    Quality-Optimized and Secure End-to-End Authentication for Media Delivery

    Full text link

    Optimized protection of streaming media authenticity

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Quality of service technologies for multimedia applications in next generation networks

    Get PDF
    Next Generation Networks are constantly evolving towards solutions that allow the operator to provide advanced multimedia applications with QoS guarantees in heterogeneous, multi-domain and multi-services networks. Other than the unquestionable advantages inherent the ability to simultaneously handle traffic flows at different QoS levels, these architectures require management systems to efficiently perform quality guarantees and network resource utilization. These issues have been addressed in this thesis. DiffServ-aware Traffic Engineering (DS-TE) has been considered as reference architecture for the deployment of the quality management systems. It represents the most advanced technology to accomplish either network scalability and service granularity goals. On the basis of DS-TE features, a methodology for traffic and network resource management has been defined. It provides some rules for QoS service characterization and allows to implement Traffic Engineering policies with a class-based approach. A set of basic parameters for quality evaluation has been defined, that are the Key Performance Indicators; some mathematical model to derive the statistical nature of traffic have been analyzed and an algorithm to improve the fulfillment of quality of service targets and to optimize network resource utilization. It is aimed at reducing the complexity inherent the setting of some of the key parameters in the NGN architectures. Multidomain scenarios with technologies different from DS-TE have been also evaluated, defining some methodologies for network interoperability. Simulations with Opnet Modeler confirmed the efficacy of the proposed system in computing network configurations with QoS targets. With regard to QoS performance at the application level, video streaming applications in wireless domains have been particularly addressed. A rate control algorithm to adjust the rate on a per-window basis has been defined, making use of a short-term prediction of the network delay to keep the probability of playback buffer starvation lower than a desired threshold during each window. Finally, a framework for mutual authentication in web applications has been proposed and evaluated. It integrates an IBA password technique with a challenge-response scheme based on a shared secret key for image scrambling. The wireless environment is mainly addressed by the proposed system, which tries to overcome the severe constraints on security, data transmission capability and user friendliness imposed by such environment
    corecore