4,711 research outputs found

    Preliminary results on noncollocated torque control of space robot actuators

    Get PDF
    In the Space Station era, more operations will be performed robotically in space in the areas of servicing, assembly, and experiment tending among others. These robots may have various sets of requirements for accuracy, speed, and force generation, but there will be design constraints such as size, mass, and power dissipation limits. For actuation, a leading motor candidate is a dc brushless type, and there are numerous potential drive trains each with its own advantages and disadvantages. This experiment uses a harmonic drive and addresses some inherent limitations, namely its backdriveability and low frequency structural resonances. These effects are controlled and diminished by instrumenting the actuator system with a torque transducer on the output shaft. This noncollocated loop is closed to ensure that the commanded torque is accurately delivered to the manipulator link. The actuator system is modelled and its essential parameters identified. The nonlinear model for simulations will include inertias, gearing, stiction, flexibility, and the effects of output load variations. A linear model is extracted and used for designing the noncollocated torque and position feedback loops. These loops are simulated with the structural frequency encountered in the testbed system. Simulation results are given for various commands in position. The use of torque feedback is demonstrated to yield superior performance in settling time and positioning accuracy. An experimental setup being finished consists of a bench mounted motor and harmonic drive actuator system. A torque transducer and two position encoders, each with sufficient resolution and bandwidth, will provide sensory information. Parameters of the physical system are being identified and matched to analytical predictions. Initial feedback control laws will be incorporated in the bench test equipment and various experiments run to validate the designs. The status of these experiments is given

    High speed, precision motion strategies for lightweight structures

    Get PDF
    Research on space telerobotics is summarized. Adaptive control experiments on the Robotic Arm, Large and Flexible (RALF) were preformed and are documented, along with a joint controller design for the Small Articulated Manipulator (SAM), which is mounted on the RALF. A control algorithm is described as a robust decentralized adaptive control based on a bounded uncertainty approach. Dynamic interactions between SAM and RALF are examined. Unstability of the manipulator is studied from the perspective that the inertial forces generated could actually be used to more rapidly damp out the flexible manipulator's vibration. Currently being studied is the modeling of the constrained dynamics of flexible arms

    Amplitude and frequency control of a vibratory pile driver

    Get PDF
    Abstract—This paper describes the digital control of a vibratory pile driver in which the vibration is generated via two tandem pairs of electrically driven, geared, contra-rotating eccentrics. Experimental results are included to show the controller-induced system dynamics for a variety of load condtions, and to highlight the fact that, if the relative phase of the eccentric pairs is not controlled, the natural tendency at high excitation frequency is for the pile driver to operate with a low vibration amplitude. An analytical technique for identifying the system parameters is presented, and analytical performance predictions are compared with experimental results. Analysis of the power flow in the system shows that, although significant power transfer occurs between the two electrical drives, the net power dissipation during pile driving is relatively low

    A lightweight, high strength dexterous manipulator for commercial applications

    Get PDF
    The concept, design, and features are described of a lightweight, high strength, modular robot manipulator being developed for space and commercial applications. The manipulator has seven fully active degrees of freedom and is fully operational in 1 G. Each of the seven joints incorporates a unique drivetrain design which provides zero backlash operation, is insensitive to wear, and is single fault tolerant to motor or servo amplifier failure. Feedback sensors provide position, velocity, torque, and motor winding temperature information at each joint. This sensing system is also designed to be single fault tolerant. The manipulator consists of five modules (not including gripper). These modules join via simple quick-disconnect couplings and self-mating connectors which allow rapid assembly and/or disassembly for reconfiguration, transport, or servicing. The manipulator is a completely enclosed assembly, with no exposed components or wires. Although the initial prototype will not be space qualified, the design is well suited to meeting space requirements. The control system provides dexterous motion by controlling the endpoint location and arm pose simultaneously. Potential applications are discussed

    A Model-Free Approach for Accurate Joint Motion Control in Humanoid Locomotion

    Get PDF
    A new model-free approach to precisely control humanoid robot joints is presented in this article. An input&-output online identification procedure will permit to compensate neglected or uncertain dynamics, such as, on the one hand, transmission and compliance nonlinear effects, and, on the other hand, network transmission delays. Robustness toparameter variations will be analyzed and compared to other advanced PID-based controllers. Simulations will show that not only good tracking quality can be obtained with this novel technique, but also that it provides a very robust behavior to the closed-loop system. Furthermore, a locomotion task will be tested in a complete humanoid simulatorto highlight the suitability of this control approach for such complex systems.This work has been supported by the CAM Project S2009/DPI-1559/ROBOCITY2030 II, developed by the research team RoboticsLab at the University Carlos III of Madrid.Publicad

    Constrained Optimized Command Shaping for Minimizing Residual Vibration in a Flexible-Joint Robot

    Get PDF
    Joint flexibility is a natural trait of robotic manipulators, which limits fast point-to-point motion. Remedial measures are often employed to enable these systems to perform their goal in a desired manner. These measures range from either modifying the system dynamics such that the resonance is increasingly damped or by designing cleverly shaped input commands that avoid exciting the resonant modes altogether. In this work, a numerical framework for generating constrained shaped commands for a two-link flexible-joint robot is presented. To optimally select the design parameters for generating shaped commands, the effects of subjecting the optimization to mutually exhaustive constraints of residual vibration performance, speed of motion and size of actuators has been studied. Few important performance metrics to characterize the performance are also introduced and discussed. The framework has been tested for two basis functions, ramped sinusoid and segmented versine, in simulations and experiments and performance is evaluated against one another and an unshaped bang-bang profile. In practice, it has been shown that the constrained numerical approach reduces vibration in the nonlinear robot system in a more effective and efficient manner than the unconstrained closed-form solution
    • …
    corecore