344,716 research outputs found

    3D-printed devices for continuous-flow organic chemistry

    Get PDF
    We present a study in which the versatility of 3D-printing is combined with the processing advantages of flow chemistry for the synthesis of organic compounds. Robust and inexpensive 3D-printed reactionware devices are easily connected using standard fittings resulting in complex, custom-made flow systems, including multiple reactors in a series with in-line, real-time analysis using an ATR-IR flow cell. As a proof of concept, we utilized two types of organic reactions, imine syntheses and imine reductions, to show how different reactor configurations and substrates give different products

    Average-cost based robust structural control

    Get PDF
    A method is presented for the synthesis of robust controllers for linear time invariant structural systems with parameterized uncertainty. The method involves minimizing quantities related to the quadratic cost (H2-norm) averaged over a set of systems described by real parameters such as natural frequencies and modal residues. Bounded average cost is shown to imply stability over the set of systems. Approximations for the exact average are derived and proposed as cost functionals. The properties of these approximate average cost functionals are established. The exact average and approximate average cost functionals are used to derive dynamic controllers which can provide stability robustness. The robustness properties of these controllers are demonstrated in illustrative numerical examples and tested in a simple SISO experiment on the MIT multi-point alignment testbed

    Parameter Dependent Robust Control Invariant Sets for LPV Systems with Bounded Parameter Variation Rate

    Full text link
    Real-time measurements of the scheduling parameter of linear parameter-varying (LPV) systems enables the synthesis of robust control invariant (RCI) sets and parameter dependent controllers inducing invariance. We present a method to synthesize parameter-dependent robust control invariant (PD-RCI) sets for LPV systems with bounded parameter variation, in which invariance is induced using PD-vertex control laws. The PD-RCI sets are parameterized as configuration-constrained polytopes that admit a joint parameterization of their facets and vertices. The proposed sets and associated control laws are computed by solving a single semidefinite programing (SDP) problem. Through numerical examples, we demonstrate that the proposed method outperforms state-of-the-art methods for synthesizing PD-RCI sets, both with respect to conservativeness and computational load.Comment: 8 pages, 6 figure

    Modelling of signal uncertainty and control objectives in robust controller design

    Get PDF
    This work develops a new paradigm for optimal robust controller synthesis in the frequency domain. A detailed examination is made of the engineering motivation and engineering efficacy underlying the various strands of robust control theory. The modelling of (a) signal uncertainty and (b) control system objectives in both Tioo and C\ control theories is considered in particular detail. Based on this examination, a theory which can fa irly be described as ‘a m odified 7ioo control theory’ or ‘a frequency domain C\ control theory’ is proposed. New signal sets for the modelling of uncertain signals are introduced. It is argued that these models more faithfully capture the way in which uncertain signals act on real physical systems. It is shown that by adopting these new models for uncertain signals, control theory can be used to non-conservatively minimise maximum tracking errors in the time domain, in the SISO case. In the MIMO case, the problem of optimally synthesising a controller to non-conservatively minimise tracking errors in the time domain leads to a modest variation on existing control theory, requiring the usual norm to be modified slightly. It is argued th a t the proposed paradigm in general achieves a better quality of control and more fa ith fu lly expresses the true objectives of feedback control systems. The proposed development is seen to also extend naturally to Ti.2 control theory, and indeed provides a new deterministic justification for the 7^2 control problem in the MIMO case. The question of design transparency in the synthesis of optimal robust controllers for multivariable systems is considered in detail. The implications of the proposed paradigm for transparency of design and weighting function selection are detailed. A decoupling design procedure for robust controller synthesis is proposed which, under certain restrictive conditions, allows the calculation of super-optimal robust controllers on a loop by loop basis. The usefulness of a classical decoupling approach to MIMO control system design in the context of multivariable robust control theory is demonstrated. A number of design examples are presented which show how the ideas and methods developed in this work can be applied to realistic control problems

    H<sub>∞</sub> Static Output-Feedback Gain-Scheduled Control for Discrete LPV Time-Delay Systems<sup>⁎</sup>

    Get PDF
    This paper proposes new synthesis conditions to design H∞ static output-feedback controllers for discrete-time linear systems affected by time-varying parameters and time-varying delays. The design conditions are provided in terms of sufficient parameter-dependent linear matrix inequalities with a scalar parameter, being capable of synthesizing either robust or gain-scheduled controllers. The main motivations to deal with such problem are that many real-world plants can be modeled in terms of discrete-time linear parameter-varying (LPV) time-delay models and the lack of methods to deal with such systems considering an output-feedback based approach. The technique presented in this paper is quite generalist, allowing an arbitrary structure for the measured output matrix. Numerical examples are provided to illustrate the effectiveness of the synthesis conditions, tractable in terms of LMI relaxations, for robust or gain-scheduled H∞ output-feedback for LPV time-delayed systems

    Interval Modeling and Robust Control of Piezoelectric Microactuators.

    No full text
    International audienceMicrosystems are very sensitive to environmental disturbances (thermal variation, surrounding vibration, microobjects in contact with them, etc.) and they are often subjected to small degradation or their behaviors are often affected during the functioning. As a result, their parameters often change during the micromanipulation, microassembly or measurement tasks and the accuracy or even the stability may be lost. For that, robust control laws should be introduced to control them and to ensure the performance. H1 and Ό-synthesis approaches were the classical robust techniques used to control microsystems. They are undeniably efficient but they lead to high-order controllers that are sometimes inconvenient for real-time embedded systems. In this paper, by the means of interval numbers that are used to characterize the uncertain parameters, we propose a method to synthesize simple controllers ensuring robust performance for microsystems. The controller synthesis is formulated as a set-inclusion problem. The main advantages of the proposed method are the ease of modeling the uncertain parameters thanks to intervals and the simplicity and low-order of the derived controllers. The method is afterwards applied to model and control piezoelectric microactuators and the experimental results show its efficiency. Finally, using the H1 technique, we also demonstrate numerically the performance robustness of the closed-loop with the designed controller

    Deep Learning for Abstraction, Control and Monitoring of Complex Cyber-Physical Systems

    Get PDF
    Cyber-Physical Systems (CPS) consist of digital devices that interact with some physical components. Their popularity and complexity are growing exponentially, giving birth to new, previously unexplored, safety-critical application domains. As CPS permeate our daily lives, it becomes imperative to reason about their reliability. Formal methods provide rigorous techniques for verification, control and synthesis of safe and reliable CPS. However, these methods do not scale with the complexity of the system, thus their applicability to real-world problems is limited. A promising strategy is to leverage deep learning techniques to tackle the scalability issue of formal methods, transforming unfeasible problems into approximately solvable ones. The approximate models are trained over observations which are solutions of the formal problem. In this thesis, we focus on the following tasks, which are computationally challenging: the modeling and the simulation of a complex stochastic model, the design of a safe and robust control policy for a system acting in a highly uncertain environment and the runtime verification problem under full or partial observability. Our approaches, based on deep learning, are indeed applicable to real-world complex and safety-critical systems acting under strict real-time constraints and in presence of a significant amount of uncertainty.Cyber-Physical Systems (CPS) consist of digital devices that interact with some physical components. Their popularity and complexity are growing exponentially, giving birth to new, previously unexplored, safety-critical application domains. As CPS permeate our daily lives, it becomes imperative to reason about their reliability. Formal methods provide rigorous techniques for verification, control and synthesis of safe and reliable CPS. However, these methods do not scale with the complexity of the system, thus their applicability to real-world problems is limited. A promising strategy is to leverage deep learning techniques to tackle the scalability issue of formal methods, transforming unfeasible problems into approximately solvable ones. The approximate models are trained over observations which are solutions of the formal problem. In this thesis, we focus on the following tasks, which are computationally challenging: the modeling and the simulation of a complex stochastic model, the design of a safe and robust control policy for a system acting in a highly uncertain environment and the runtime verification problem under full or partial observability. Our approaches, based on deep learning, are indeed applicable to real-world complex and safety-critical systems acting under strict real-time constraints and in presence of a significant amount of uncertainty
    • 

    corecore