25,305 research outputs found

    Robust Suboptimal Control of Nonlinear Systems

    Get PDF
    In this paper, we consider a nonlinear dynamic system with uncertain parameters. Our goal is to choose a control function for this system that balances two competing objectives: (i) the system should operate efficiently; and (ii) the system's performance should be robust with respect to changes in the uncertain parameters. With this in mind, we introduce an optimal control problem with a cost function penalizing both the system cost (a function of the final state reached by the system) and the system sensitivity (the derivative of the system cost with respect to the uncertain parameters). We then show that the system sensitivity can be computed by solving an auxiliary initial value problem. This result allows one to convert the optimal control problem into a standard Mayer problem, which can be solved directly using conventional techniques. We illustrate this approach by solving two example problems using the software MISER3

    Improved robust control of nonlinear stochastic systems using uncertain models

    Get PDF
    We introduce a technique for quantifying and then exploiting uncertainty in nonlinear stochastic control systems. The approach is suboptimal though robust and relies upon the approximation of the forward and inverse plant models by neural networks, which also estimate the intrinsic uncertainty. Sampling from the resulting Gaussian distributions of the inversion based neurocontroller allows us to introduce a control law which is demonstrably more robust than traditional adaptive controllers

    Robust Stability of Suboptimal Moving Horizon Estimation using an Observer-Based Candidate Solution

    Get PDF
    In this paper, we propose a suboptimal moving horizon estimator for nonlinear systems. For the stability analysis we transfer the "feasibility-implies-stability/robustness" paradigm from model predictive control to the context of moving horizon estimation in the following sense: Using a suitably defined, feasible candidate solution based on the trajectory of an auxiliary observer, robust stability of the proposed suboptimal estimator is inherited independently of the horizon length and even if no optimization is performed.Comment: This work has been submitted to IFAC for possible publicatio

    Suboptimal Minimax Design of Constrained Parabolic Systems with Mixed Boundary Control

    Get PDF
    The paper concerns minimax control problems for linear multidimensional parabolic systems with distributed uncertain perturbations and control functions acting in mixed (Robin) boundary conditions. The main goal is to design a feedback control regulator that ensures the required state performance and robust stability under any feasible perturbations and minimize an energy-type functional under the worst perturbations from the given area. We design and justify an easily implemented suboptimal structure of the feedback boundary regulator and compute its optimal parameters ensuring the required state performance and robust stability of the nonlinear closed-loop control system on the infinite horizon

    A class of stabilizing controllers for flexible multibody systems

    Get PDF
    The problem of controlling a class of nonlinear multibody flexible space systems consisting of a flexible central body to which a number of articulated appendages are attached is considered. Collocated actuators and sensors are assumed, and global asymptotic stability of such systems is established under a nonlinear dissipative control law. The stability is shown to be robust to unmodeled dynamics and parametric uncertainties. For a special case in which the attitude motion of the central body is small, the system, although still nonlinear, is shown to be stabilized by linear dissipative control laws. Two types of linear controllers are considered: static dissipative (constant gain) and dynamic dissipative. The static dissipative control law is also shown to provide robust stability in the presence of certain classes of actuator and sensor nonlinearities and actuator dynamics. The results obtained for this special case can also be readily applied for controlling single-body linear flexible space structures. For this case, a synthesis technique for the design of a suboptimal dynamic dissipative controller is also presented. The results obtained in this paper are applicable to a broad class of multibody and single-body systems such as flexible multilink manipulators, multipayload space platforms, and space antennas. The stability proofs use the Lyapunov approach and exploit the inherent passivity of such systems

    Robust stabilization of nonlinear systems via stable kernel representations with L2-gain bounded uncertainty

    Get PDF
    The approach to robust stabilization of linear systems using normalized left coprime factorizations with H∞ bounded uncertainty is generalized to nonlinear systems. A nonlinear perturbation model is derived, based on the concept of a stable kernel representation of nonlinear systems. The robust stabilization problem is then translated into a nonlinear disturbance feedforward H∞ optimal control problem, whose solution depends on the solvability of a single Hamilton-Jacobi equation

    Suboptimal Feedback Control Design of Constrained Parabolic Systems in Uncertainty Conditions

    Get PDF
    The paper concerns minimax control problems forlinear multidimensional parabolic systems with distributed uncertain perturbations and control functions acting in the Dirichlet boundary conditions. The underlying parabolic control system is functioning under hard/pointwise constraints on control and state variables. The main goal is to design a feedback control regulator that ensures the required state performance and robust stability under any feasible perturbations and minimize an energy-type functional under the worst perturbations from the given area. We develop an efficient approach to the minimax control design of constrained parabolic systems that is based on certain characteristic features of the parabolic dynamics including the transient monotonicity with respect to both controls and perturbations and the turnpike asymptotic behavior on the infinite horizon. In this way, solving a number of associated open-loop control and approximation problems, we justify an easily implemented suboptimal structure of the feedback boundary regulator and compute its optimal parameters ensuring the required state performance and robust stability of the closed-loop, highly nonlinear parabolic control system on the infinite horizon

    Optimal Control and Feedback Design of State-Constrained Parabolic Systems in Uncertainty Conditions

    Get PDF
    The paper concerns minimax control problems for linear multidimensional parabolic systems with distributed uncertain perturbations and control functions acting in the Dirichlet boundary conditions. The underlying parabolic control system is functioning under hard/pointwise constraints on control and state variables. The main goal is to design a feedback control regulator that ensures the required state performance and robust stability under any feasible perturbations and minimize an energy-type functional under the worst perturbations from the given area. We develop a constructive approach to the minimax control design of constrained parabolic systems that is based on certain characteristic features of the parabolic dynamics including the transient monotonicity with respect to both controls and perturbations and the turnpike asymptotic behavior on the infinite horizon. In this way, solving a number of associated open-loop control and optimization problems, we justify an easily implementable three-positional suboptimal structure of the feedback boundary regulator and compute its optimal parameters, ensuring thus the required state performance and robust stability of the closed-loop, highly nonlinear parabolic control system on the infinite horizon

    New advances in H∞ control and filtering for nonlinear systems

    Get PDF
    The main objective of this special issue is to summarise recent advances in H∞ control and filtering for nonlinear systems, including time-delay, hybrid and stochastic systems. The published papers provide new ideas and approaches, clearly indicating the advances made in problem statements, methodologies or applications with respect to the existing results. The special issue also includes papers focusing on advanced and non-traditional methods and presenting considerable novelties in theoretical background or experimental setup. Some papers present applications to newly emerging fields, such as network-based control and estimation
    corecore