23 research outputs found

    An Evolved Control Design of Complex Systems with Multitime Delays and Multi-Interconnections

    Get PDF
    To guarantee the asymptotic stability of multi-time delays complex system with multi-interconnections, an evolved control design is proposed in this paper. Based on this criterion and the decentralized control scheme, a set of fuzzy controllers is then synthesized via the technique of parallel distributed compensation (PDC) to stabilize a complex system with multi-interconnections. This representation of PDC is constructed by sector nonlinearity which converts the nonlinear model to multiple rule base of the linear model and a new sufficient condition to guarantee the asymptotic stability via Lyapunov function is implemented in terms of linear matrix inequalities (LMI). Finally, a numerical example with simulations is given to demonstrate the results

    Systems Structure and Control

    Get PDF
    The title of the book System, Structure and Control encompasses broad field of theory and applications of many different control approaches applied on different classes of dynamic systems. Output and state feedback control include among others robust control, optimal control or intelligent control methods such as fuzzy or neural network approach, dynamic systems are e.g. linear or nonlinear with or without time delay, fixed or uncertain, onedimensional or multidimensional. The applications cover all branches of human activities including any kind of industry, economics, biology, social sciences etc

    Proceedings of the 1st Virtual Control Conference VCC 2010

    Get PDF

    Discrete Time Systems

    Get PDF
    Discrete-Time Systems comprehend an important and broad research field. The consolidation of digital-based computational means in the present, pushes a technological tool into the field with a tremendous impact in areas like Control, Signal Processing, Communications, System Modelling and related Applications. This book attempts to give a scope in the wide area of Discrete-Time Systems. Their contents are grouped conveniently in sections according to significant areas, namely Filtering, Fixed and Adaptive Control Systems, Stability Problems and Miscellaneous Applications. We think that the contribution of the book enlarges the field of the Discrete-Time Systems with signification in the present state-of-the-art. Despite the vertiginous advance in the field, we also believe that the topics described here allow us also to look through some main tendencies in the next years in the research area

    Contraction Theory for Robust Learning-Based Control: Toward Aerospace and Robotic Autonomy

    Get PDF
    Machine learning and AI have been used for achieving autonomy in various aerospace and robotic systems. In next-generation research tasks, which could involve highly nonlinear, complicated, and large-scale decision-making problems in safety-critical situations, however, the existing performance guarantees of black-box AI approaches may not be sufficiently powerful. This thesis gives a mathematical overview of contraction theory, with some practical examples drawn from joint projects with NASA JPL, for enjoying formal guarantees of nonlinear control theory even with the use of machine learning-based and data-driven methods. This is not to argue that these methods are always better than conventional approaches, but to provide formal tools to investigate their performance for further discussion, so we can design and operate truly autonomous aerospace and robotic systems safely, robustly, adaptively, and intelligently in real-time. Contraction theory is an analytical tool to study differential dynamics of a non-autonomous (i.e., time-varying) nonlinear system under a contraction metric defined with a uniformly positive definite matrix, the existence of which results in a necessary and sufficient characterization of incremental exponential stability of multiple solution trajectories with respect to each other. Its nonlinear stability analysis boils down to finding a suitable contraction metric that satisfies a stability condition expressed as a linear matrix inequality, resulting in many parallels drawn between linear systems theory and contraction theory for nonlinear systems. This yields much-needed safety and stability guarantees for neural network-based control and estimation schemes, without resorting to a more involved method of using uniform asymptotic stability for input-to-state stability. Such distinctive features permit the systematic construction of a contraction metric via convex optimization, thereby obtaining an explicit exponential bound on the distance between a time-varying target trajectory and solution trajectories perturbed externally due to disturbances and learning errors. The first two parts of this thesis are about a theoretical overview of contraction theory and its advantages, with an emphasis on deriving formal robustness and stability guarantees for deep learning-based 1) feedback control, 2) state estimation, 3) motion planning, 4) multi-agent collision avoidance and robust tracking augmentation, 5) adaptive control, 6) neural net-based system identification and control, for nonlinear systems perturbed externally by deterministic and stochastic disturbances. In particular, we provide a detailed review of techniques for finding contraction metrics and associated control and estimation laws using deep neural networks. In the third part of the thesis, we present several numerical simulations and empirical validation of our proposed approaches to assess the impact of our findings on realizing aerospace and robotic autonomy. We mainly focus on the two joint projects with NASA JPL: 1) Science-Infused Spacecraft Autonomy for Interstellar Object Exploration and 2) Constellation Autonomous Space Technology Demonstration of Orbital Reconfiguration (CASTOR), where we also perform hardware demonstrations of our methods using our thruster-based spacecraft simulators (M-STAR) and in high-conflict, distributed, intelligent UAV swarm reconfiguration with up to 20 UAVs (crazyflies).</p

    Control Theory in Engineering

    Get PDF
    The subject matter of this book ranges from new control design methods to control theory applications in electrical and mechanical engineering and computers. The book covers certain aspects of control theory, including new methodologies, techniques, and applications. It promotes control theory in practical applications of these engineering domains and shows the way to disseminate researchers’ contributions in the field. This project presents applications that improve the properties and performance of control systems in analysis and design using a higher technical level of scientific attainment. The authors have included worked examples and case studies resulting from their research in the field. Readers will benefit from new solutions and answers to questions related to the emerging realm of control theory in engineering applications and its implementation

    Technology for large space systems: A bibliography with indexes (supplement 10)

    Get PDF
    The bibliography lists 408 reports, articles and other documents introduced into the NASA scientific and technical information system to provide helpful information to the researcher, manager, and designer in technology development and mission design in the area of large space system technology. Subject matter is grouped according to systems, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems

    Large space structures and systems in the space station era: A bibliography with indexes (supplement 04)

    Get PDF
    Bibliographies and abstracts are listed for 1211 reports, articles, and other documents introduced into the NASA scientific and technical information system between 1 Jul. and 30 Dec. 1991. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems

    Proceedings of the Workshop on Identification and Control of Flexible Space Structures, volume 1

    Get PDF
    Identification and control of flexible space structures were studied. Exploration of the most advanced modeling estimation, identification and control methodologies to flexible space structures was discussed. The following general areas were discussed: space platforms, antennas, and flight experiments; control/structure interactions - modeling, integrated design and optimization, control and stabilization, and shape control; control technology; control of space stations; large antenna control, dynamics and control experiments, and control/structure interaction experiments

    Applications of Power Electronics:Volume 2

    Get PDF
    corecore