381 research outputs found

    Robust Stabilization of Nonlinear Systems by Quantized and Ternary Control

    Get PDF
    Results on the problem of stabilizing a nonlinear continuous-time system by a finite number of control or measurement values are presented. The basic tool is a discontinuous version of the so-called semi-global backstepping lemma. We derive robust practical stabilizability results by quantized and ternary controllers and apply them to some significant control problems.Comment: 14 pages, 4 figure

    Stability of quantized time-delay nonlinear systems: A Lyapunov-Krasowskii-functional approach

    Get PDF
    Lyapunov-Krasowskii functionals are used to design quantized control laws for nonlinear continuous-time systems in the presence of constant delays in the input. The quantized control law is implemented via hysteresis to prevent chattering. Under appropriate conditions, our analysis applies to stabilizable nonlinear systems for any value of the quantization density. The resulting quantized feedback is parametrized with respect to the quantization density. Moreover, the maximal allowable delay tolerated by the system is characterized as a function of the quantization density.Comment: 31 pages, 3 figures, to appear in Mathematics of Control, Signals, and System

    Cooperative Nearest-Neighbor Control of Multi-Agent Systems: Consensus and Formation Control Problems

    Get PDF
    This letter studies the problem of cooperative nearest-neighbor control of multi-agent systems where each agent can only realize a finite set of control points. Under the assumption that the underlying graph representing the communication network between agents is connected and the interior of the convex hull of all finite actions of each agent contains the zero element, consensus or distance-based formation problems can practically be stabilized by means of nearest-neighbor control approach combined with the well-known consensus control or distributed formation control laws, respectively. Furthermore, we provide the convergence bound for each corresponding error vector which can be computed based on the information of individual agent's finite control points. Finally, we show Monte Carlo numerical simulations that confirm our analysis

    Adaptive Quantized Control of Offshore Underactuated Cranes with Uncertainty

    Get PDF
    Author's accepted manuscript.© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.acceptedVersionPaid open acces

    On Resilient Control of Nonlinear Systems under Denial-of-Service

    Full text link
    We analyze and design a control strategy for nonlinear systems under Denial-of-Service attacks. Based on an ISS-Lyapunov function analysis, we provide a characterization of the maximal percentage of time during which feedback information can be lost without resulting in the instability of the system. Motivated by the presence of a digital channel we consider event-based controllers for which a minimal inter-sampling time is explicitly characterized.Comment: 7 pages, 1 figur

    Stability of quantized time-delay nonlinear systems:A Lyapunov-Krasowskii-functional approach

    Get PDF

    Adaptive Backstepping Control of a 2-DOF Helicopter System with Uniform Quantized Inputs

    Get PDF
    Author's accepted manuscript© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper proposes a new adaptive controller for a 2-Degree of Freedom (DOF) helicopter system in the presence of input quantization. The inputs are quantized by uniform quantizers. A nonlinear mathematical model is derived for the 2-DOF helicopter system based on Euler-Lagrange equations, where the system parameters and the control coefficients are uncertain. A new adaptive control algorithm is developed by using backstepping technique to track the pitch and yaw position references independently. Only quantized input signals are used in the system which reduces communication rate and cost. It is shown that not only the ultimate stability is guaranteed by the proposed controller, but also the designers can tune the design parameters in an explicit way to obtain the required closed loop behavior. Experiments are carried out on the Quanser helicopter system to validate the effectiveness, robustness and control capability of the proposed scheme.acceptedVersio

    Robustness of quantized continuous-time nonlinear systems to encoder/decoder mismatch

    Get PDF
    • …
    corecore