1,644 research outputs found

    Time-and event-driven communication process for networked control systems: A survey

    Get PDF
    Copyright © 2014 Lei Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research topics on networked control systems (NCSs) have gained an increasing interest from many researchers in a variety of disciplines owing to the extensive applications of NCSs in practice. In particular, an urgent need has arisen to understand the effects of communication processes on system performances. Sampling and protocol are two fundamental aspects of a communication process which have attracted a great deal of research attention. Most research focus has been on the analysis and control of dynamical behaviors under certain sampling procedures and communication protocols. In this paper, we aim to survey some recent advances on the analysis and synthesis issues of NCSs with different sampling procedures (time-and event-driven sampling) and protocols (static and dynamic protocols). First, these sampling procedures and protocols are introduced in detail according to their engineering backgrounds as well as dynamic natures. Then, the developments of the stabilization, control, and filtering problems are systematically reviewed and discussed in great detail. Finally, we conclude the paper by outlining future research challenges for analysis and synthesis problems of NCSs with different communication processes.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Robust H∞ control with missing measurements and time delays

    Get PDF
    Copyright [2007] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this technical note, the robust control problem is investigated for a class of stochastic uncertain discrete time-delay systems with missing measurements. The parameter uncertainties enter into the state matrices, and the missing measurements are described by a binary switching sequence satisfying a conditional probability distribution. The purpose of the problem is to design a full-order dynamic feedback controller such that, for all possible missing observations and admissible parameter uncertainties, the closed-loop system is asymptotically mean-square stable and satisfies the prescribed performance constraint. Delay-dependent conditions are derived under which the desired solution exists, and the controller parameters are designed by solving a linear matrix inequality (LMI). A numerical example is provided to illustrate the usefulness of the proposed design method

    On design of quantized fault detection filters with randomly occurring nonlinearities and mixed time-delays

    Get PDF
    This paper is concerned with the fault detection problem for a class of discrete-time systems with randomly occurring nonlinearities, mixed stochastic time-delays as well as measurement quantizations. The nonlinearities are assumed to occur in a random way. The mixed time-delays comprise both the multiple discrete time-delays and the infinite distributed delays that occur in a random way as well. A sequence of stochastic variables is introduced to govern the random occurrences of the nonlinearities, discrete time-delays and distributed time-delays, where all the stochastic variables are mutually independent but obey the Bernoulli distribution. The main purpose of this paper is to design a fault detection filter such that, in the presence of measurement quantization, the overall fault detection dynamics is exponentially stable in the mean square and, at the same time, the error between the residual signal and the fault signal is made as small as possible. Sufficient conditions are first established via intensive stochastic analysis for the existence of the desired fault detection filters, and then the explicit expression of the desired filter gains is derived by means of the feasibility of certain matrix inequalities. Also, the optimal performance index for the addressed fault detection problem can be obtained by solving an auxiliary convex optimization problem. A practical example is provided to show the usefulness and effectiveness of the proposed design method

    A robust LMI approach on nonlinear feedback stabilization of continuous state-delay systems with Lipschitzian nonlinearities : experimental validation

    Get PDF
    This paper suggests a novel nonlinear state-fe edback stabilization control law using linear matrix inequalities for a class oftime-delayed nonlinear dynamic systems with Lipschitz nonlinearity conditions. Based on the Lyapunov–Krasovskiistability theory, the asymptotic stabilization criterion is derived in the linear matrix inequality form and the coef¿cients ofthe nonlinear state-feedback controller are determined. Meanwhile, an appropriate criterion to ¿nd the proper feedbackgain matrix F is also provided. The robustness purpose against nonlinear functions and time delays is guaranteed in thisscheme. Moreover , the problem of robust H!performance analysis for a class of nonlinear time-delayed system s withexternal disturbance is studied in this paper. Simulations are presented to demonstrate the pro¿ciency of the offeredtechnique. For this purpos e, an unstable nonlinear numerical system and a rotary inverted pendulum system have beenstudied in the simulation section. Moreover, an experimental study of the practical rotary inverted pendul um system isprovided. These results con¿rm the expected satisfactory performance of the suggested method.Peer ReviewedPostprint (author's final draft

    Load frequency controllers considering renewable energy integration in power system

    Get PDF
    Abstract: Load frequency control or automatic generation control is one of the main operations that take place daily in a modern power system. The objectives of load frequency control are to maintain power balance between interconnected areas and to control the power flow in the tie-lines. Electric power cannot be stored in large quantity that is why its production must be equal to the consumption in each time. This equation constitutes the key for a good management of any power system and introduces the need of more controllers when taking into account the integration of renewable energy sources into the traditional power system. There are many controllers presented in the literature and this work reviews the traditional load frequency controllers and those, which combined the traditional controller and artificial intelligence algorithms for controlling the load frequency
    corecore