47,563 research outputs found

    ์ฃผ๋ณ€ ํ™˜๊ฒฝ์— ๊ฐ•์ธํ•œ ์Œ์„ฑ์ธ์‹์„ ์œ„ํ•œ ๋ชจ๋ธ ๋ฐ ๋ฐ์ดํ„ฐ๊ธฐ๋ฐ˜ ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2015. 8. ๊น€๋‚จ์ˆ˜.In this thesis, we propose model-based and data-driven techniques for environment-robust automatic speech recognition. The model-based technique is the feature enhancement method in the reverberant noisy environment to improve the performance of Gaussian mixture model-hidden Markov model (HMM) system. It is based on the interacting multiple model (IMM), which was originally developed in single-channel scenario. We extend the single-channel IMM algorithm such that it can handle the multi-channel inputs under the Bayesian framework. The multi-channel IMM algorithm is capable of tracking time-varying room impulse responses and background noises by updating the relevant parameters in an on-line manner. In order to reduce the computation as the number of microphones increases, a computationally efficient algorithm is also devised. In various simulated and real environmental conditions, the performance gain of the proposed method has been confirmed. The data-driven techniques are based on deep neural network (DNN)-HMM hybrid system. In order to enhance the performance of DNN-HMM system in the adverse environments, we propose three techniques. Firstly, we propose a novel supervised pre-training technique for DNN-HMM system to achieve robust speech recognition in adverse environments. In the proposed approach, our aim is to initialize the DNN parameters such that they yield abstract features robust to acoustic environment variations. In order to achieve this, we first derive the abstract features from an early fine-tuned DNN model which is trained based on a clean speech database. By using the derived abstract features as the target values, the standard error back-propagation algorithm with the stochastic gradient descent method is performed to estimate the initial parameters of the DNN. The performance of the proposed algorithm was evaluated on Aurora-4 DB and better results were observed compared to a number of conventional pre-training methods. Secondly, a new DNN-based robust speech recognition approaches taking advantage of noise estimates are proposed. A novel part of the proposed approaches is that the time-varying noise estimates are applied to the DNN as additional inputs. For this, we extract the noise estimates in a frame-by-frame manner from the IMM algorithm which has been known to show good performance in tracking slowly-varying background noise. The performance of the proposed approaches is evaluated on Aurora-4 DB and better performance is observed compared to the conventional DNN-based robust speech recognition algorithms. Finally, a new approach to DNN-based robust speech recognition using soft target labels is proposed. The soft target labeling means that each target value of the DNN output is not restricted to 0 or 1 but takes non negative values in (0,1) and their sum equals 1. In this study, the soft target labels are obtained from the forward-backward algorithm well-known in HMM training. The proposed method makes the DNN training be more robust in noisy and unseen conditions. The performance of the proposed approach was evaluated on Aurora-4 DB and various mismatched noise test conditions, and found better compared to the conventional hard target labeling method. Furthermore, in the data-driven approaches, an integrated technique using above three algorithms and model-based technique is described. In matched and mismatched noise conditions, the performance results are discussed. In matched noise conditions, the initialization method for the DNN was effective to enhance the recognition performance. In mismatched noise conditions, the combination of using the noise estimates as an DNN input and soft target labels showed the best recognition results in all the tested combinations of the proposed techniques.Abstract i Contents iv List of Figures viii List of Tables x 1 Introduction 1 2 Experimental Environments and Database 7 2.1 ASR in Hands-Free Scenario and Feature Extraction 7 2.2 Relationship between Clean and Distorted Speech in Feature Domain 10 2.3 Database 12 2.3.1 TI Digits Corpus 13 2.3.2 Aurora-4 DB 15 3 Previous Robust ASR Approaches 17 3.1 IMM-Based Feature Compensation in Noise Environment 18 3.2 Single-Channel Reverberation and Noise-Robust Feature Enhancement Based on IMM 24 3.3 Multi-Channel Feature Enhancement for Robust Speech Recognition 26 3.4 DNN-Based Robust Speech Recognition 27 4 Multi-Channel IMM-Based Feature Enhancement for Robust Speech Recognition 31 4.1 Introduction 31 4.2 Observation Model in Multi-Channel Reverberant Noisy Environment 33 4.3 Multi-Channel Feature Enhancement in a Bayesian Framework 35 4.3.1 A Priori Clean Speech Model 37 4.3.2 A Priori Model for RIR 38 4.3.3 A Priori Model for Background Noise 39 4.3.4 State Transition Formulation 40 4.3.5 Function Linearization 41 4.4 Feature Enhancement Algorithm 42 4.5 Incremental State Estimation 48 4.6 Experiments 52 4.6.1 Simulation Data 52 4.6.2 Live Recording Data 54 4.6.3 Computational Complexity 55 4.7 Summary 56 5 Supervised Denoising Pre-Training for Robust ASR with DNN-HMM 59 5.1 Introduction 59 5.2 Deep Neural Networks 61 5.3 Supervised Denoising Pre-Training 63 5.4 Experiments 65 5.4.1 Feature Extraction and GMM-HMM System 66 5.4.2 DNN Structures 66 5.4.3 Performance Evaluation 68 5.5 Summary 69 6 DNN-Based Frameworks for Robust Speech Recognition Using Noise Estimates 71 6.1 Introduction 71 6.2 DNN-Based Frameworks for Robust ASR 73 6.2.1 Robust Feature Enhancement 74 6.2.2 Robust Model Training 75 6.3 IMM-Based Noise Estimation 77 6.4 Experiments 78 6.4.1 DNN Structures 78 6.4.2 Performance Evaluations 79 6.5 Summary 82 7 DNN-Based Robust Speech Recognition Using Soft Target Labels 83 7.1 Introduction 83 7.2 DNN-HMM Hybrid System 85 7.3 Soft Target Label Estimation 87 7.4 Experiments 89 7.4.1 DNN Structures 89 7.4.2 Performance Evaluation 90 7.4.3 Effects of Control Parameter ฮพ 91 7.4.4 An Integration with SDPT and ESTN Methods 92 7.4.5 Performance Evaluation on Various Noise Types 93 7.4.6 DNN Training and Decoding Time 95 7.5 Summary 96 8 Conclusions 99 Bibliography 101 ์š”์•ฝ 108Docto

    Spectral Reconstruction and Noise Model Estimation Based on a Masking Model for Noise Robust Speech Recognition

    Get PDF
    An effective way to increase noise robustness in automatic speech recognition (ASR) systems is feature enhancement based on an analytical distortion model that describes the effects of noise on the speech features. One of such distortion models that has been reported to achieve a good trade-off between accuracy and simplicity is the masking model. Under this model, speech distortion caused by environmental noise is seen as a spectral mask and, as a result, noisy speech features can be either reliable (speech is not masked by noise) or unreliable (speech is masked). In this paper, we present a detailed overview of this model and its applications to noise robust ASR. Firstly, using the masking model, we derive a spectral reconstruction technique aimed at enhancing the noisy speech features. Two problems must be solved in order to perform spectral reconstruction using the masking model: (1) mask estimation, i.e. determining the reliability of the noisy features, and (2) feature imputation, i.e. estimating speech for the unreliable features. Unlike missing data imputation techniques where the two problems are considered as independent, our technique jointly addresses them by exploiting a priori knowledge of the speech and noise sources in the form of a statistical model. Secondly, we propose an algorithm for estimating the noise model required by the feature enhancement technique. The proposed algorithm fits a Gaussian mixture model to the noise by iteratively maximising the likelihood of the noisy speech signal so that noise can be estimated even during speech-dominating frames. A comprehensive set of experiments carried out on the Aurora-2 and Aurora-4 databases shows that the proposed method achieves significant improvements over the baseline system and other similar missing data imputation techniques

    ๊ฐ•์ธํ•œ ์Œ์„ฑ์ธ์‹์„ ์œ„ํ•œ DNN ๊ธฐ๋ฐ˜ ์Œํ–ฅ ๋ชจ๋ธ๋ง

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2019. 2. ๊น€๋‚จ์ˆ˜.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ฐ•์ธํ•œ ์Œ์„ฑ์ธ์‹์„ ์œ„ํ•ด์„œ DNN์„ ํ™œ์šฉํ•œ ์Œํ–ฅ ๋ชจ๋ธ๋ง ๊ธฐ๋ฒ•๋“ค์„ ์ œ์•ˆํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ํฌ๊ฒŒ ์„ธ ๊ฐ€์ง€์˜ DNN ๊ธฐ๋ฐ˜ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” DNN์ด ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ์žก์Œ ํ™˜๊ฒฝ์— ๋Œ€ํ•œ ๊ฐ•์ธํ•จ์„ ๋ณด์กฐ ํŠน์ง• ๋ฒกํ„ฐ๋“ค์„ ํ†ตํ•˜์—ฌ ์ตœ๋Œ€๋กœ ํ™œ์šฉํ•˜๋Š” ์Œํ–ฅ ๋ชจ๋ธ๋ง ๊ธฐ๋ฒ•์ด๋‹ค. ์ด๋Ÿฌํ•œ ๊ธฐ๋ฒ•์„ ํ†ตํ•˜์—ฌ DNN์€ ์™œ๊ณก๋œ ์Œ์„ฑ, ๊นจ๋—ํ•œ ์Œ์„ฑ, ์žก์Œ ์ถ”์ •์น˜, ๊ทธ๋ฆฌ๊ณ  ์Œ์†Œ ํƒ€๊ฒŸ๊ณผ์˜ ๋ณต์žกํ•œ ๊ด€๊ณ„๋ฅผ ๋ณด๋‹ค ์›ํ™œํ•˜๊ฒŒ ํ•™์Šตํ•˜๊ฒŒ ๋œ๋‹ค. ๋ณธ ๊ธฐ๋ฒ•์€ Aurora-5 DB ์—์„œ ๊ธฐ์กด์˜ ๋ณด์กฐ ์žก์Œ ํŠน์ง• ๋ฒกํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ๋ชจ๋ธ ์ ์‘ ๊ธฐ๋ฒ•์ธ ์žก์Œ ์ธ์ง€ ํ•™์Šต (noise-aware training, NAT) ๊ธฐ๋ฒ•์„ ํฌ๊ฒŒ ๋›ฐ์–ด๋„˜๋Š” ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” DNN์„ ํ™œ์šฉํ•œ ๋‹ค ์ฑ„๋„ ํŠน์ง• ํ–ฅ์ƒ ๊ธฐ๋ฒ•์ด๋‹ค. ๊ธฐ์กด์˜ ๋‹ค ์ฑ„๋„ ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ๋Š” ์ „ํ†ต์ ์ธ ์‹ ํ˜ธ ์ฒ˜๋ฆฌ ๊ธฐ๋ฒ•์ธ ๋น”ํฌ๋ฐ ๊ธฐ๋ฒ•์„ ํ†ตํ•˜์—ฌ ํ–ฅ์ƒ๋œ ๋‹จ์ผ ์†Œ์Šค ์Œ์„ฑ ์‹ ํ˜ธ๋ฅผ ์ถ”์ถœํ•˜๊ณ  ๊ทธ๋ฅผ ํ†ตํ•˜์—ฌ ์Œ์„ฑ์ธ์‹์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” ๊ธฐ์กด์˜ ๋น”ํฌ๋ฐ ์ค‘์—์„œ ๊ฐ€์žฅ ๊ธฐ๋ณธ์  ๊ธฐ๋ฒ• ์ค‘ ํ•˜๋‚˜์ธ delay-and-sum (DS) ๋น”ํฌ๋ฐ ๊ธฐ๋ฒ•๊ณผ DNN์„ ๊ฒฐํ•ฉํ•œ ๋‹ค ์ฑ„๋„ ํŠน์ง• ํ–ฅ์ƒ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” DNN์€ ์ค‘๊ฐ„ ๋‹จ๊ณ„ ํŠน์ง• ๋ฒกํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ๊ณต๋™ ํ•™์Šต ๊ธฐ๋ฒ•์„ ํ†ตํ•˜์—ฌ ์™œ๊ณก๋œ ๋‹ค ์ฑ„๋„ ์ž…๋ ฅ ์Œ์„ฑ ์‹ ํ˜ธ๋“ค๊ณผ ๊นจ๋—ํ•œ ์Œ์„ฑ ์‹ ํ˜ธ์™€์˜ ๊ด€๊ณ„๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ‘œํ˜„ํ•œ๋‹ค. ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์€ multichannel wall street journal audio visual (MC-WSJAV) corpus์—์„œ์˜ ์‹คํ—˜์„ ํ†ตํ•˜์—ฌ, ๊ธฐ์กด์˜ ๋‹ค์ฑ„๋„ ํ–ฅ์ƒ ๊ธฐ๋ฒ•๋“ค๋ณด๋‹ค ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅ์„ ๋ณด์ž„์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๋ถˆํ™•์ •์„ฑ ์ธ์ง€ ํ•™์Šต (Uncertainty-aware training, UAT) ๊ธฐ๋ฒ•์ด๋‹ค. ์œ„์—์„œ ์†Œ๊ฐœ๋œ ๊ธฐ๋ฒ•๋“ค์„ ํฌํ•จํ•˜์—ฌ ๊ฐ•์ธํ•œ ์Œ์„ฑ์ธ์‹์„ ์œ„ํ•œ ๊ธฐ์กด์˜ DNN ๊ธฐ๋ฐ˜ ๊ธฐ๋ฒ•๋“ค์€ ๊ฐ๊ฐ์˜ ๋„คํŠธ์›Œํฌ์˜ ํƒ€๊ฒŸ์„ ์ถ”์ •ํ•˜๋Š”๋ฐ ์žˆ์–ด์„œ ๊ฒฐ์ •๋ก ์ ์ธ ์ถ”์ • ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•œ๋‹ค. ์ด๋Š” ์ถ”์ •์น˜์˜ ๋ถˆํ™•์ •์„ฑ ๋ฌธ์ œ ํ˜น์€ ์‹ ๋ขฐ๋„ ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ œ์•ˆํ•˜๋Š” UAT ๊ธฐ๋ฒ•์€ ํ™•๋ฅ ๋ก ์ ์ธ ๋ณ€ํ™” ์ถ”์ •์„ ํ•™์Šตํ•˜๊ณ  ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ ๋ชจ๋ธ์ธ ๋ณ€ํ™” ์˜คํ† ์ธ์ฝ”๋” (variational autoencoder, VAE) ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•œ๋‹ค. UAT๋Š” ์™œ๊ณก๋œ ์Œ์„ฑ ํŠน์ง• ๋ฒกํ„ฐ์™€ ์Œ์†Œ ํƒ€๊ฒŸ๊ณผ์˜ ๊ด€๊ณ„๋ฅผ ๋งค๊ฐœํ•˜๋Š” ๊ฐ•์ธํ•œ ์€๋‹‰ ๋ณ€์ˆ˜๋ฅผ ๊นจ๋—ํ•œ ์Œ์„ฑ ํŠน์ง• ๋ฒกํ„ฐ ์ถ”์ •์น˜์˜ ๋ถ„ํฌ ์ •๋ณด๋ฅผ ์ด์šฉํ•˜์—ฌ ๋ชจ๋ธ๋งํ•œ๋‹ค. UAT์˜ ์€๋‹‰ ๋ณ€์ˆ˜๋“ค์€ ๋”ฅ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์Œํ–ฅ ๋ชจ๋ธ์— ์ตœ์ ํ™”๋œ uncertainty decoding (UD) ํ”„๋ ˆ์ž„์›Œํฌ๋กœ๋ถ€ํ„ฐ ์œ ๋„๋œ ์ตœ๋Œ€ ์šฐ๋„ ๊ธฐ์ค€์— ๋”ฐ๋ผ์„œ ํ•™์Šต๋œ๋‹ค. ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์€ Aurora-4 DB์™€ CHiME-4 DB์—์„œ ๊ธฐ์กด์˜ DNN ๊ธฐ๋ฐ˜ ๊ธฐ๋ฒ•๋“ค์„ ํฌ๊ฒŒ ๋›ฐ์–ด๋„˜๋Š” ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค.In this thesis, we propose three acoustic modeling techniques for robust automatic speech recognition (ASR). Firstly, we propose a DNN-based acoustic modeling technique which makes the best use of the inherent noise-robustness of DNN is proposed. By applying this technique, the DNN can automatically learn the complicated relationship among the noisy, clean speech and noise estimate to phonetic target smoothly. The proposed method outperformed noise-aware training (NAT), i.e., the conventional auxiliary-feature-based model adaptation technique in Aurora-5 DB. The second method is multi-channel feature enhancement technique. In the general multi-channel speech recognition scenario, the enhanced single speech signal source is extracted from the multiple inputs using beamforming, i.e., the conventional signal-processing-based technique and the speech recognition process is performed by feeding that source into the acoustic model. We propose the multi-channel feature enhancement DNN algorithm by properly combining the delay-and-sum (DS) beamformer, which is one of the conventional beamforming techniques and DNN. Through the experiments using multichannel wall street journal audio visual (MC-WSJ-AV) corpus, it has been shown that the proposed method outperformed the conventional multi-channel feature enhancement techniques. Finally, uncertainty-aware training (UAT) technique is proposed. The most of the existing DNN-based techniques including the techniques introduced above, aim to optimize the point estimates of the targets (e.g., clean features, and acoustic model parameters). This tampers with the reliability of the estimates. In order to overcome this issue, UAT employs a modified structure of variational autoencoder (VAE), a neural network model which learns and performs stochastic variational inference (VIF). UAT models the robust latent variables which intervene the mapping between the noisy observed features and the phonetic target using the distributive information of the clean feature estimates. The proposed technique outperforms the conventional DNN-based techniques on Aurora-4 and CHiME-4 databases.Abstract i Contents iv List of Figures ix List of Tables xiii 1 Introduction 1 2 Background 9 2.1 Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Experimental Database . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Aurora-4 DB . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.2 Aurora-5 DB . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.3 MC-WSJ-AV DB . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.4 CHiME-4 DB . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 Two-stage Noise-aware Training for Environment-robust Speech Recognition 25 iii 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 Noise-aware Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 Two-stage NAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.1 Lower DNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.2 Upper DNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3.3 Joint Training . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.4.1 GMM-HMM System . . . . . . . . . . . . . . . . . . . . . . . 37 3.4.2 Training and Structures of DNN-based Techniques . . . . . . 37 3.4.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 40 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4 DNN-based Feature Enhancement for Robust Multichannel Speech Recognition 45 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2 Observation Model in Multi-Channel Reverberant Noisy Environment 49 4.3 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3.1 Lower DNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.3.2 Upper DNN and Joint Training . . . . . . . . . . . . . . . . . 54 4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.4.1 Recognition System and Feature Extraction . . . . . . . . . . 56 4.4.2 Training and Structures of DNN-based Techniques . . . . . . 58 4.4.3 Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.4.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 62 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 iv 5 Uncertainty-aware Training for DNN-HMM System using Varia- tional Inference 67 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.2 Uncertainty Decoding for Noise Robustness . . . . . . . . . . . . . . 72 5.3 Variational Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.4 VIF-based uncertainty-aware Training . . . . . . . . . . . . . . . . . 83 5.4.1 Clean Uncertainty Network . . . . . . . . . . . . . . . . . . . 91 5.4.2 Environment Uncertainty Network . . . . . . . . . . . . . . . 93 5.4.3 Prediction Network and Joint Training . . . . . . . . . . . . . 95 5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.5.1 Experimental Setup: Feature Extraction and ASR System . . 96 5.5.2 Network Structures . . . . . . . . . . . . . . . . . . . . . . . . 98 5.5.3 Eects of CUN on the Noise Robustness . . . . . . . . . . . . 104 5.5.4 Uncertainty Representation in Dierent SNR Condition . . . 105 5.5.5 Result of Speech Recognition . . . . . . . . . . . . . . . . . . 112 5.5.6 Result of Speech Recognition with LSTM-HMM . . . . . . . 114 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6 Conclusions 127 Bibliography 131 ์š”์•ฝ 145Docto

    Deep Learning for Environmentally Robust Speech Recognition: An Overview of Recent Developments

    Get PDF
    Eliminating the negative effect of non-stationary environmental noise is a long-standing research topic for automatic speech recognition that stills remains an important challenge. Data-driven supervised approaches, including ones based on deep neural networks, have recently emerged as potential alternatives to traditional unsupervised approaches and with sufficient training, can alleviate the shortcomings of the unsupervised methods in various real-life acoustic environments. In this light, we review recently developed, representative deep learning approaches for tackling non-stationary additive and convolutional degradation of speech with the aim of providing guidelines for those involved in the development of environmentally robust speech recognition systems. We separately discuss single- and multi-channel techniques developed for the front-end and back-end of speech recognition systems, as well as joint front-end and back-end training frameworks
    • โ€ฆ
    corecore