69 research outputs found

    Radar Technology

    Get PDF
    In this book “Radar Technology”, the chapters are divided into four main topic areas: Topic area 1: “Radar Systems” consists of chapters which treat whole radar systems, environment and target functional chain. Topic area 2: “Radar Applications” shows various applications of radar systems, including meteorological radars, ground penetrating radars and glaciology. Topic area 3: “Radar Functional Chain and Signal Processing” describes several aspects of the radar signal processing. From parameter extraction, target detection over tracking and classification technologies. Topic area 4: “Radar Subsystems and Components” consists of design technology of radar subsystem components like antenna design or waveform design

    A Statistical Perspective of the Empirical Mode Decomposition

    Get PDF
    This research focuses on non-stationary basis decompositions methods in time-frequency analysis. Classical methodologies in this field such as Fourier Analysis and Wavelet Transforms rely on strong assumptions of the underlying moment generating process, which, may not be valid in real data scenarios or modern applications of machine learning. The literature on non-stationary methods is still in its infancy, and the research contained in this thesis aims to address challenges arising in this area. Among several alternatives, this work is based on the method known as the Empirical Mode Decomposition (EMD). The EMD is a non-parametric time-series decomposition technique that produces a set of time-series functions denoted as Intrinsic Mode Functions (IMFs), which carry specific statistical properties. The main focus is providing a general and flexible family of basis extraction methods with minimal requirements compared to those within the Fourier or Wavelet techniques. This is highly important for two main reasons: first, more universal applications can be taken into account; secondly, the EMD has very little a priori knowledge of the process required to apply it, and as such, it can have greater generalisation properties in statistical applications across a wide array of applications and data types. The contributions of this work deal with several aspects of the decomposition. The first set regards the construction of an IMF from several perspectives: (1) achieving a semi-parametric representation of each basis; (2) extracting such semi-parametric functional forms in a computationally efficient and statistically robust framework. The EMD belongs to the class of path-based decompositions and, therefore, they are often not treated as a stochastic representation. (3) A major contribution involves the embedding of the deterministic pathwise decomposition framework into a formal stochastic process setting. One of the assumptions proper of the EMD construction is the requirement for a continuous function to apply the decomposition. In general, this may not be the case within many applications. (4) Various multi-kernel Gaussian Process formulations of the EMD will be proposed through the introduced stochastic embedding. Particularly, two different models will be proposed: one modelling the temporal mode of oscillations of the EMD and the other one capturing instantaneous frequencies location in specific frequency regions or bandwidths. (5) The construction of the second stochastic embedding will be achieved with an optimisation method called the cross-entropy method. Two formulations will be provided and explored in this regard. Application on speech time-series are explored to study such methodological extensions given that they are non-stationary

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Recent Developments in Smart Healthcare

    Get PDF
    Medicine is undergoing a sector-wide transformation thanks to the advances in computing and networking technologies. Healthcare is changing from reactive and hospital-centered to preventive and personalized, from disease focused to well-being centered. In essence, the healthcare systems, as well as fundamental medicine research, are becoming smarter. We anticipate significant improvements in areas ranging from molecular genomics and proteomics to decision support for healthcare professionals through big data analytics, to support behavior changes through technology-enabled self-management, and social and motivational support. Furthermore, with smart technologies, healthcare delivery could also be made more efficient, higher quality, and lower cost. In this special issue, we received a total 45 submissions and accepted 19 outstanding papers that roughly span across several interesting topics on smart healthcare, including public health, health information technology (Health IT), and smart medicine

    Automatic inference of causal reasoning chains from student essays

    Get PDF
    While there has been an increasing focus on higher-level thinking skills arising from the Common Core Standards, many high-school and middle-school students struggle to combine and integrate information from multiple sources when writing essays. Writing is an important learning skill, and there is increasing evidence that writing about a topic develops a deeper understanding in the student. However, grading essays is time consuming for teachers, resulting in an increasing focus on shallower forms of assessment that are easier to automate, such as multiple-choice tests. Existing essay grading software has attempted to ease this burden but relies on shallow lexico-syntactic features and is unable to understand the structure or validity of a student’s arguments or explanations. Without the ability to understand a student’s reasoning processes, it is impossible to write automated formative assessment systems to assist students with improving their thinking skills through essay writing. In order to understand the arguments put forth in an explanatory essay in the science domain, we need a method of representing the causal structure of a piece of explanatory text. Psychologists use a representation called a causal model to represent a student\u27s understanding of an explanatory text. This consists of a number of core concepts, and a set of causal relations linking them into one or more causal chains, forming a causal model. In this thesis I present a novel system for automatically constructing causal models from student scientific essays using Natural Language Processing (NLP) techniques. The problem was decomposed into 4 sub-problems - assigning essay concepts to words, detecting causal-relations between these concepts, resolving coreferences within each essay, and using the structure of the whole essay to reconstruct a causal model. Solutions to each of these sub-problems build upon the predictions from the solutions to earlier problems, forming a sequential pipeline of models. Designing a system in this way allows later models to correct for false positive predictions from downstream models. However, this also has the disadvantage that errors made in earlier models can propagate through the system, negatively impacting the upstream models, and limiting their accuracy. Producing robust solutions for the initial 2 sub problems, detecting concepts, and parsing causal relations between them, was critical in building a robust system. A number of sequence labeling models were trained to classify the concepts associated with each word, with the most effective approach being a bidirectional recurrent neural network (RNN), a deep learning model commonly applied to word labeling problems. This is because the RNN used pre-trained word embeddings to better generalize to rarer words, and was able to use information from both ends of each sentence to infer a word\u27s concept. The concepts predicted by this model were then used to develop causal relation parsing models for detecting causal connections between these concepts. A shift-reduce dependency parsing model was trained using the SEARN algorithm and out-performed a number of other approaches by better utilizing the structure of the problem and directly optimizing the error metric used. Two pre-trained coreference resolution systems were used to resolve coreferences within the essays. However a word tagging model trained to predict anaphors combined with a heuristic for determining the antecedent out-performed these two systems. Finally, a model was developed for parsing a causal model from an entire essay, utilizing the solutions to the three previous problems. A beam search algorithm was used to produce multiple parses for each sentence, which in turn were combined to generate multiple candidate causal models for each student essay. A reranking algorithm was then used to select the optimal causal model from all of the generated candidates. An important contribution of this work is that it represents a system for parsing a complete causal model of a scientific essay from a student\u27s written answer. Existing systems have been developed to parse individual causal relations, but no existing system attempts to parse a sequence of linked causal relations forming a causal model from an explanatory scientific essay. It is hoped that this work can lead to the development of more robust essay grading software and formative assessment tools, and can be extended to build solutions for extracting causality from text in other domains. In addition, I also present 2 novel approaches for optimizing the micro-F1 score within the design of two of the algorithms studied: the dependency parser and the reranking algorithm. The dependency parser uses a custom cost function to estimate the impact of parsing mistakes on the overall micro-F1 score, while the reranking algorithm allows the micro-F1 score to be optimized by tuning the beam search parameter to balance recall and precision
    • …
    corecore