1,604 research outputs found

    Signal Subspace Processing in the Beam Space of a True Time Delay Beamformer Bank

    Get PDF
    A number of techniques for Radio Frequency (RF) source location for wide bandwidth signals have been described that utilize coherent signal subspace processing, but often suffer from limitations such as the requirement for preliminary source location estimation, the need to apply the technique iteratively, computational expense or others. This dissertation examines a method that performs subspace processing of the data from a bank of true time delay beamformers. The spatial diversity of the beamformer bank alleviates the need for a preliminary estimate while simultaneously reducing the dimensionality of subsequent signal subspace processing resulting in computational efficiency. The pointing direction of the true time delay beams is independent of frequency, which results in a mapping from element space to beam space that is wide bandwidth in nature. This dissertation reviews previous methods, introduces the present method, presents simulation results that demonstrate the assertions, discusses an analysis of performance in relation to the Cramer-Rao Lower Bound (CRLB) with various levels of noise in the system, and discusses computational efficiency. One limitation of the method is that in practice it may be appropriate for systems that can tolerate a limited field of view. The application of Electronic Intelligence is one such application. This application is discussed as one that is appropriate for a method exhibiting high resolution of very wide bandwidth closely spaced sources and often does not require a wide field of view. In relation to system applications, this dissertation also discusses practical employment of the novel method in terms of antenna elements, arrays, platforms, engagement geometries, and other parameters. The true time delay beam space method is shown through modeling and simulation to be capable of resolving closely spaced very wideband sources over a relevant field of view in a single algorithmic pass, requiring no course preliminary estimation, and exhibiting low computational expense superior to many previous wideband coherent integration techniques

    Signal Subspace Processing in the Beam Space of a True Time Delay Beamformer Bank

    Get PDF
    A number of techniques for Radio Frequency (RF) source location for wide bandwidth signals have been described that utilize coherent signal subspace processing, but often suffer from limitations such as the requirement for preliminary source location estimation, the need to apply the technique iteratively, computational expense or others. This dissertation examines a method that performs subspace processing of the data from a bank of true time delay beamformers. The spatial diversity of the beamformer bank alleviates the need for a preliminary estimate while simultaneously reducing the dimensionality of subsequent signal subspace processing resulting in computational efficiency. The pointing direction of the true time delay beams is independent of frequency, which results in a mapping from element space to beam space that is wide bandwidth in nature. This dissertation reviews previous methods, introduces the present method, presents simulation results that demonstrate the assertions, discusses an analysis of performance in relation to the Cramer-Rao Lower Bound (CRLB) with various levels of noise in the system, and discusses computational efficiency. One limitation of the method is that in practice it may be appropriate for systems that can tolerate a limited field of view. The application of Electronic Intelligence is one such application. This application is discussed as one that is appropriate for a method exhibiting high resolution of very wide bandwidth closely spaced sources and often does not require a wide field of view. In relation to system applications, this dissertation also discusses practical employment of the novel method in terms of antenna elements, arrays, platforms, engagement geometries, and other parameters. The true time delay beam space method is shown through modeling and simulation to be capable of resolving closely spaced very wideband sources over a relevant field of view in a single algorithmic pass, requiring no course preliminary estimation, and exhibiting low computational expense superior to many previous wideband coherent integration techniques

    Mathematical modelling ano optimization strategies for acoustic source localization in reverberant environments

    Get PDF
    La presente Tesis se centra en el uso de técnicas modernas de optimización y de procesamiento de audio para la localización precisa y robusta de personas dentro de un entorno reverberante dotado con agrupaciones (arrays) de micrófonos. En esta tesis se han estudiado diversos aspectos de la localización sonora, incluyendo el modelado, la algoritmia, así como el calibrado previo que permite usar los algoritmos de localización incluso cuando la geometría de los sensores (micrófonos) es desconocida a priori. Las técnicas existentes hasta ahora requerían de un número elevado de micrófonos para obtener una alta precisión en la localización. Sin embargo, durante esta tesis se ha desarrollado un nuevo método que permite una mejora de más del 30\% en la precisión de la localización con un número reducido de micrófonos. La reducción en el número de micrófonos es importante ya que se traduce directamente en una disminución drástica del coste y en un aumento de la versatilidad del sistema final. Adicionalmente, se ha realizado un estudio exhaustivo de los fenómenos que afectan al sistema de adquisición y procesado de la señal, con el objetivo de mejorar el modelo propuesto anteriormente. Dicho estudio profundiza en el conocimiento y modelado del filtrado PHAT (ampliamente utilizado en localización acústica) y de los aspectos que lo hacen especialmente adecuado para localización. Fruto del anterior estudio, y en colaboración con investigadores del instituto IDIAP (Suiza), se ha desarrollado un sistema de auto-calibración de las posiciones de los micrófonos a partir del ruido difuso presente en una sala en silencio. Esta aportación relacionada con los métodos previos basados en la coherencia. Sin embargo es capaz de reducir el ruido atendiendo a parámetros físicos previamente conocidos (distancia máxima entre los micrófonos). Gracias a ello se consigue una mejor precisión utilizando un menor tiempo de cómputo. El conocimiento de los efectos del filtro PHAT ha permitido crear un nuevo modelo que permite la representación 'sparse' del típico escenario de localización. Este tipo de representación se ha demostrado ser muy conveniente para localización, permitiendo un enfoque sencillo del caso en el que existen múltiples fuentes simultáneas. La última aportación de esta tesis, es el de la caracterización de las Matrices TDOA (Time difference of arrival -Diferencia de tiempos de llegada, en castellano-). Este tipo de matrices son especialmente útiles en audio pero no están limitadas a él. Además, este estudio transciende a la localización con sonido ya que propone métodos de reducción de ruido de las medias TDOA basados en una representación matricial 'low-rank', siendo útil, además de en localización, en técnicas tales como el beamforming o el autocalibrado

    High-resolution imaging methods in array signal processing

    Get PDF

    Three-dimensional point-cloud room model in room acoustics simulations

    Get PDF

    A robust approach to the order detection for the damped sinusoids based on the shift-invariance property

    Get PDF

    Design and Realization of Fully-digital Microwave and Mm-wave Multi-beam Arrays with FPGA/RF-SOC Signal Processing

    Get PDF
    There has been a constant increase in data-traffic and device-connections in mobile wireless communications, which led the fifth generation (5G) implementations to exploit mm-wave bands at 24/28 GHz. The next-generation wireless access point (6G and beyond) will need to adopt large-scale transceiver arrays with a combination of multi-input-multi-output (MIMO) theory and fully digital multi-beam beamforming. The resulting high gain array factors will overcome the high path losses at mm-wave bands, and the simultaneous multi-beams will exploit the multi-directional channels due to multi-path effects and improve the signal-to-noise ratio. Such access points will be based on electronic systems which heavily depend on the integration of RF electronics with digital signal processing performed in Field programmable gate arrays (FPGA)/ RF-system-on-chip (SoC). This dissertation is directed towards the investigation and realization of fully-digital phased arrays that can produce wideband simultaneous multi-beams with FPGA or RF-SoC digital back-ends. The first proposed approach is a spatial bandpass (SBP) IIR filter-based beamformer, and is based on the concepts of space-time network resonance. A 2.4 GHz, 16-element array receiver, has been built for real-time experimental verification of this approach. The second and third approaches are respectively based on Discrete Fourier Transform (DFT) theory, and a lens plus focal planar array theory. Lens based approach is essentially an analog model of DFT. These two approaches are verified for a 28 GHz 800 MHz mm-wave implementation with RF-SoC as the digital back-end. It has been shown that for all proposed multibeam beamformer implementations, the measured beams are well aligned with those of the simulated. The proposed approaches differ in terms of their architectures, hardware complexity and costs, which will be discussed as this dissertation opens up. This dissertation also presents an application of multi-beam approaches for RF directional sensing applications to explore white spaces within the spatio-temporal spectral regions. A real-time directional sensing system is proposed to capture the white spaces within the 2.4 GHz Wi-Fi band. Further, this dissertation investigates the effect of electro-magnetic (EM) mutual coupling in antenna arrays on the real-time performance of fully-digital transceivers. Different algorithms are proposed to uncouple the mutual coupling in digital domain. The first one is based on finding the MC transfer function from the measured S-parameters of the antenna array and employing it in a Frost FIR filter in the beamforming backend. The second proposed method uses fast algorithms to realize the inverse of mutual coupling matrix via tridiagonal Toeplitz matrices having sparse factors. A 5.8 GHz 32-element array and 1-7 GHz 7-element tightly coupled dipole array (TCDA) have been employed to demonstrate the proof-of-concept of these algorithms

    Tomographic Techniques for Radar Ice Sounding

    Get PDF
    corecore