1,110 research outputs found

    Vision-Guided Robot Hearing

    Get PDF
    International audienceNatural human-robot interaction (HRI) in complex and unpredictable environments is important with many potential applicatons. While vision-based HRI has been thoroughly investigated, robot hearing and audio-based HRI are emerging research topics in robotics. In typical real-world scenarios, humans are at some distance from the robot and hence the sensory (microphone) data are strongly impaired by background noise, reverberations and competing auditory sources. In this context, the detection and localization of speakers plays a key role that enables several tasks, such as improving the signal-to-noise ratio for speech recognition, speaker recognition, speaker tracking, etc. In this paper we address the problem of how to detect and localize people that are both seen and heard. We introduce a hybrid deterministic/probabilistic model. The deterministic component allows us to map 3D visual data onto an 1D auditory space. The probabilistic component of the model enables the visual features to guide the grouping of the auditory features in order to form audiovisual (AV) objects. The proposed model and the associated algorithms are implemented in real-time (17 FPS) using a stereoscopic camera pair and two microphones embedded into the head of the humanoid robot NAO. We perform experiments with (i)~synthetic data, (ii)~publicly available data gathered with an audiovisual robotic head, and (iii)~data acquired using the NAO robot. The results validate the approach and are an encouragement to investigate how vision and hearing could be further combined for robust HRI

    Optimality and limitations of audio-visual integration for cognitive systems

    Get PDF
    Multimodal integration is an important process in perceptual decision-making. In humans, this process has often been shown to be statistically optimal, or near optimal: sensory information is combined in a fashion that minimizes the average error in perceptual representation of stimuli. However, sometimes there are costs that come with the optimization, manifesting as illusory percepts. We review audio-visual facilitations and illusions that are products of multisensory integration, and the computational models that account for these phenomena. In particular, the same optimal computational model can lead to illusory percepts, and we suggest that more studies should be needed to detect and mitigate these illusions, as artifacts in artificial cognitive systems. We provide cautionary considerations when designing artificial cognitive systems with the view of avoiding such artifacts. Finally, we suggest avenues of research toward solutions to potential pitfalls in system design. We conclude that detailed understanding of multisensory integration and the mechanisms behind audio-visual illusions can benefit the design of artificial cognitive systems.Human-Robot Interactio

    Audio-visual object localization and separation using low-rank and sparsity

    Get PDF
    The ability to localize visual objects that are associated with an audio source and at the same time seperate the audio signal is a corner stone in several audio-visual signal processing applications. Past efforts usually focused on localizing only the visual objects, without audio separation abilities. Besides, they often rely computational expensive pre-processing steps to segment images pixels into object regions before applying localization approaches. We aim to address the problem of audio-visual source localization and separation in an unsupervised manner. The proposed approach employs low-rank in order to model the background visual and audio information and sparsity in order to extract the sparsely correlated components between the audio and visual modalities. In particular, this model decomposes each dataset into a sum of two terms: the low-rank matrices capturing the background uncorrelated information, while the sparse correlated components modelling the sound source in visual modality and the associated sound in audio modality. To this end a novel optimization problem, involving the minimization of nuclear norms and matrix â„“1-norms is solved. We evaluated the proposed method in 1) visual localization and audio separation and 2) visual-assisted audio denoising. The experimental results demonstrate the effectiveness of the proposed method
    • …
    corecore