16,102 research outputs found

    Spatial Acoustic Vector Based Sound Field Reproduction

    Get PDF
    Spatial sound field reproduction aims to recreate an immersive sound field over a spatial region. The existing sound pressure based approaches to spatial sound field reproduction focus on the accurate approximation of original sound pressure over space, which ignores the perceptual accuracy of the reproduced sound field. The acoustic vectors of particle velocity and sound intensity appear to be closely linked with human perception of sound localization in literature. Therefore, in this thesis, we explore the spatial distributions of the acoustic vectors, and seek to develop algorithms to perceptually reproduce the original sound field over a continuous spatial region based on the vectors. A theory of spatial acoustic vectors is first developed, where the spatial distributions of particle velocity and sound intensity are derived from sound pressure. To extract the desired sound pressure from a mixed sound field environment, a 3D sound field separation technique is also formulated. Based on this theory, a series of reproduction techniques are proposed to improve the perceptual performance. The outcomes resulting from this theory are: (i) derivation of a particle velocity assisted 3D sound field reproduction technique which allows for non-uniform loudspeaker geometry with a limited number of loudspeakers, (ii) design of particle velocity based mixed-source sound field translation technique for binaural reproduction that can provide sound field translation with good perceptual experience over a large space, (iii) derivation of an intensity matching technique that can reproduce the desired sound field in a spherical region by controlling the sound intensity on the surface of the region, and (iv) two intensity based multizone sound field reproduction algorithms that can reproduce the desired sound field over multiple spatial zones. Finally, these techniques are evaluated by comparing to the conventional approaches through numerical simulations and real-world experiments

    Ambisonics

    Get PDF
    This open access book provides a concise explanation of the fundamentals and background of the surround sound recording and playback technology Ambisonics. It equips readers with the psychoacoustical, signal processing, acoustical, and mathematical knowledge needed to understand the inner workings of modern processing utilities, special equipment for recording, manipulation, and reproduction in the higher-order Ambisonic format. The book comes with various practical examples based on free software tools and open scientific data for reproducible research. The book’s introductory section offers a perspective on Ambisonics spanning from the origins of coincident recordings in the 1930s to the Ambisonic concepts of the 1970s, as well as classical ways of applying Ambisonics in first-order coincident sound scene recording and reproduction that have been practiced since the 1980s. As, from time to time, the underlying mathematics become quite involved, but should be comprehensive without sacrificing readability, the book includes an extensive mathematical appendix. The book offers readers a deeper understanding of Ambisonic technologies, and will especially benefit scientists, audio-system and audio-recording engineers. In the advanced sections of the book, fundamentals and modern techniques as higher-order Ambisonic decoding, 3D audio effects, and higher-order recording are explained. Those techniques are shown to be suitable to supply audience areas ranging from studio-sized to hundreds of listeners, or headphone-based playback, regardless whether it is live, interactive, or studio-produced 3D audio material

    Effects of errorless learning on the acquisition of velopharyngeal movement control

    Get PDF
    Session 1pSC - Speech Communication: Cross-Linguistic Studies of Speech Sound Learning of the Languages of Hong Kong (Poster Session)The implicit motor learning literature suggests a benefit for learning if errors are minimized during practice. This study investigated whether the same principle holds for learning velopharyngeal movement control. Normal speaking participants learned to produce hypernasal speech in either an errorless learning condition (in which the possibility for errors was limited) or an errorful learning condition (in which the possibility for errors was not limited). Nasality level of the participants’ speech was measured by nasometer and reflected by nasalance scores (in %). Errorless learners practiced producing hypernasal speech with a threshold nasalance score of 10% at the beginning, which gradually increased to a threshold of 50% at the end. The same set of threshold targets were presented to errorful learners but in a reversed order. Errors were defined by the proportion of speech with a nasalance score below the threshold. The results showed that, relative to errorful learners, errorless learners displayed fewer errors (50.7% vs. 17.7%) and a higher mean nasalance score (31.3% vs. 46.7%) during the acquisition phase. Furthermore, errorless learners outperformed errorful learners in both retention and novel transfer tests. Acknowledgment: Supported by The University of Hong Kong Strategic Research Theme for Sciences of Learning © 2012 Acoustical Society of Americapublished_or_final_versio

    Proceedings of the EAA Spatial Audio Signal Processing symposium: SASP 2019

    Get PDF
    International audienc

    Sonic Interactions in Virtual Environments

    Get PDF
    corecore