69 research outputs found

    The Multiobjective Average Network Flow Problem: Formulations, Algorithms, Heuristics, and Complexity

    Get PDF
    Integrating value focused thinking with the shortest path problem results in a unique formulation called the multiobjective average shortest path problem. We prove this is NP-complete for general graphs. For directed acyclic graphs, an efficient algorithm and even faster heuristic are proposed. While the worst case error of the heuristic is proven unbounded, its average performance on random graphs is within 3% of the optimal solution. Additionally, a special case of the more general biobjective average shortest path problem is given, allowing tradeoffs between decreases in arc set cardinality and increases in multiobjective value; the algorithm to solve the average shortest path problem provides all the information needed to solve this more difficult biobjective problem. These concepts are then extended to the minimum cost flow problem creating a new formulation we name the multiobjective average minimum cost flow. This problem is proven NP-complete as well. For directed acyclic graphs, two efficient heuristics are developed, and although we prove the error of any successive average shortest path heuristic is in theory unbounded, they both perform very well on random graphs. Furthermore, we define a general biobjective average minimum cost flow problem. The information from the heuristics can be used to estimate the efficient frontier in a special case of this problem trading off total flow and multiobjective value. Finally, several variants of these two problems are discussed. Proofs are conjectured showing the conditions under which the problems are solvable in polynomial time and when they remain NP-complete

    Algorithm Engineering in Robust Optimization

    Full text link
    Robust optimization is a young and emerging field of research having received a considerable increase of interest over the last decade. In this paper, we argue that the the algorithm engineering methodology fits very well to the field of robust optimization and yields a rewarding new perspective on both the current state of research and open research directions. To this end we go through the algorithm engineering cycle of design and analysis of concepts, development and implementation of algorithms, and theoretical and experimental evaluation. We show that many ideas of algorithm engineering have already been applied in publications on robust optimization. Most work on robust optimization is devoted to analysis of the concepts and the development of algorithms, some papers deal with the evaluation of a particular concept in case studies, and work on comparison of concepts just starts. What is still a drawback in many papers on robustness is the missing link to include the results of the experiments again in the design

    Journal of Telecommunications and Information Technology, 2010, nr 3

    Get PDF
    kwartalni

    Multiobjective optimization of New Product Development in the pharmaceutical industry

    Get PDF
    New Product Development (NPD) constitutes a challenging problem in the pharmaceutical industry, due to the characteristics of the development pipeline, namely, the presence of uncertainty, the high level of the involved capital costs, the interdependency between projects, the limited availability of resources, the overwhelming number of decisions due to the length of the time horizon (about 10 years) and the combinatorial nature of a portfolio. Formally, the NPD problem can be stated as follows: select a set of R and D projects from a pool of candidate projects in order to satisfy several criteria (economic profitability, time to market) while copying with the uncertain nature of the projects. More precisely, the recurrent key issues are to determine the projects to develop once target molecules have been identified, their order and the level of resources to assign. In this context, the proposed approach combines discrete event stochastic simulation (Monte Carlo approach) with multiobjective genetic algorithms (NSGA II type, Non-Sorted Genetic Algorithm II) to optimize the highly combinatorial portfolio management problem. An object-oriented model previously developed for batch plant scheduling and design is then extended to embed the case of new product management, which is particularly adequate for reuse of both structure and logic. Two case studies illustrate and validate the approach. From this simulation study, three performance evaluation criteria must be considered for decision making: the Net Present Value (NPV) of a sequence, its associated risk defined as the number of positive occurrences of NPV among the samples and the time to market. Theyv have been used in the multiobjective optimization formulation of the problem. In that context, Genetic Algorithms (GAs) are particularly attractive for treating this kind of problem, due to their ability to directly lead to the so-called Pareto front and to account for the combinatorial aspect. NSGA II has been adapted to the treated case for taking into account both the number of products in a sequence and the drug release order. From an analysis performed for a representative case study on the different pairs of criteria both for the bi- and tricriteria optimization, the optimization strategy turns out to be efficient and particularly elitist to detect the sequences which can be considered by the decision makers. Only a few sequences are detected. Among theses sequences, large portfolios cause resource queues and delays time to launch and are eliminated by the bicriteria optimization strategy. Small portfolio reduces queuing and time to launch appear as good candidates. The optimization strategy is interesting to detect the sequence candidates. Time is an important criterion to consider simultaneously with NPV and risk criteria. The order in which drugs are released in the pipeline is of great importance as with scheduling problems

    Optimisation du développement de nouveaux produits dans l'industrie pharmaceutique par algorithme génétique multicritère

    Get PDF
    Le développement de nouveaux produits constitue une priorité stratégique de l'industrie pharmaceutique, en raison de la présence d'incertitudes, de la lourdeur des investissements mis en jeu, de l'interdépendance entre projets, de la disponibilité limitée des ressources, du nombre très élevé de décisions impliquées dû à la longueur des processus (de l'ordre d'une dizaine d'années) et de la nature combinatoire du problème. Formellement, le problème se pose ainsi : sélectionner des projets de Ret D parmi des projets candidats pour satisfaire plusieurs critères (rentabilité économique, temps de mise sur le marché) tout en considérant leur nature incertaine. Plus précisément, les points clés récurrents sont relatifs à la détermination des projets à développer une fois que les molécules cibles sont identifiées, leur ordre de traitement et le niveau de ressources à affecter. Dans ce contexte, une approche basée sur le couplage entre un simulateur à événements discrets stochastique (approche Monte Carlo) pour représenter la dynamique du système et un algorithme d'optimisation multicritère (de type NSGA II) pour choisir les produits est proposée. Un modèle par objets développé précédemment pour la conception et l'ordonnancement d'ateliers discontinus, de réutilisation aisée tant par les aspects de structure que de logique de fonctionnement, a été étendu pour intégrer le cas de la gestion de nouveaux produits. Deux cas d'étude illustrent et valident l'approche. Les résultats de simulation ont mis en évidence l'intérêt de trois critères d'évaluation de performance pour l'aide à la décision : le bénéfice actualisé d'une séquence, le risque associé et le temps de mise sur le marché. Ils ont été utilisés dans la formulation multiobjectif du problème d'optimisation. Dans ce contexte, des algorithmes génétiques sont particulièrement intéressants en raison de leur capacité à conduire directement au front de Pareto et à traiter l'aspect combinatoire. La variante NSGA II a été adaptée au problème pour prendre en compte à la fois le nombre et l'ordre de lancement des produits dans une séquence. A partir d'une analyse bicritère réalisée pour un cas d'étude représentatif sur différentes paires de critères pour l'optimisation bi- et tri-critère, la stratégie d'optimisation s'avère efficace et particulièrement élitiste pour détecter les séquences à considérer par le décideur. Seules quelques séquences sont détectées. Parmi elles, les portefeuilles à nombre élevé de produits provoquent des attentes et des retards au lancement ; ils sont éliminés par la stratégie d'optimistaion bicritère. Les petits portefeuilles qui réduisent les files d'attente et le temps de lancement sont ainsi préférés. Le temps se révèle un critère important à optimiser simultanément, mettant en évidence tout l'intérêt d'une optimisation tricritère. Enfin, l'ordre de lancement des produits est une variable majeure comme pour les problèmes d'ordonnancement d'atelier. ABSTRACT : New Product Development (NPD) constitutes a challenging problem in the pharmaceutical industry, due to the characteristics of the development pipeline, namely, the presence of uncertainty, the high level of the involved capital costs, the interdependency between projects, the limited availability of resources, the overwhelming number of decisions due to the length of the time horizon (about 10 years) and the combinatorial nature of a portfolio. Formally, the NPD problem can be stated as follows: select a set of R and D projects from a pool of candidate projects in order to satisfy several criteria (economic profitability, time to market) while copying with the uncertain nature of the projects. More precisely, the recurrent key issues are to determine the projects to develop once target molecules have been identified, their order and the level of resources to assign. In this context, the proposed approach combines discrete event stochastic simulation (Monte Carlo approach) with multiobjective genetic algorithms (NSGA II type, Non-Sorted Genetic Algorithm II) to optimize the highly combinatorial portfolio management problem. An object-oriented model previously developed for batch plant scheduling and design is then extended to embed the case of new product management, which is particularly adequate for reuse of both structure and logic. Two case studies illustrate and validate the approach. From this simulation study, three performance evaluation criteria must be considered for decision making: the Net Present Value (NPV) of a sequence, its associated risk defined as the number of positive occurrences of NPV among the samples and the time to market. Theyv have been used in the multiobjective optimization formulation of the problem. In that context, Genetic Algorithms (GAs) are particularly attractive for treating this kind of problem, due to their ability to directly lead to the so-called Pareto front and to account for the combinatorial aspect. NSGA II has been adapted to the treated case for taking into account both the number of products in a sequence and the drug release order. From an analysis performed for a representative case study on the different pairs of criteria both for the bi- and tricriteria optimization, the optimization strategy turns out to be efficient and particularly elitist to detect the sequences which can be considered by the decision makers. Only a few sequences are detected. Among theses sequences, large portfolios cause resource queues and delays time to launch and are eliminated by the bicriteria optimization strategy. Small portfolio reduces queuing and time to launch appear as good candidates. The optimization strategy is interesting to detect the sequence candidates. Time is an important criterion to consider simultaneously with NPV and risk criteria. The order in which drugs are released in the pipeline is of great importance as with scheduling problems

    Classification of the Existing Knowledge Base of OR/MS Research and Practice (1990-2019) using a Proposed Classification Scheme

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordOperations Research/Management Science (OR/MS) has traditionally been defined as the discipline that applies advanced analytical methods to help make better and more informed decisions. The purpose of this paper is to present an analysis of the existing knowledge base of OR/MS research and practice using a proposed keywords-based approach. A conceptual structure is necessary in order to place in context the findings of our keyword analysis. Towards this we first present a classification scheme that relies on keywords that appeared in articles published in important OR/MS journals from 1990-2019 (over 82,000 articles). Our classification scheme applies a methodological approach towards keyword selection and its systematic classification, wherein approximately 1300 most frequently used keywords (in terms of cumulative percentage, these keywords and their derivations account for more than 45% of the approx. 290,000 keyword occurrences used by the authors to represent the content of their articles) were selected and organised in a classification scheme with seven top-level categories and multiple levels of sub-categories. The scheme identified the most commonly used keywords relating to OR/MS problems, modeling techniques and applications. Next, we use this proposed scheme to present an analysis of the last 30 years, in three distinct time periods, to show the changes in OR/MS literature. The contribution of the paper is thus twofold, (a) the development of a proposed discipline-based classification of keywords (like the ACM Computer Classification System and the AMS Mathematics Subject Classification), and (b) an analysis of OR/MS research and practice using the proposed classification

    The 1st International Electronic Conference on Algorithms

    Get PDF
    This book presents 22 of the accepted presentations at the 1st International Electronic Conference on Algorithms which was held completely online from September 27 to October 10, 2021. It contains 16 proceeding papers as well as 6 extended abstracts. The works presented in the book cover a wide range of fields dealing with the development of algorithms. Many of contributions are related to machine learning, in particular deep learning. Another main focus among the contributions is on problems dealing with graphs and networks, e.g., in connection with evacuation planning problems

    Energy-Efficient Technologies for High-Performance Manufacturing Industries

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Methodology and Software for Interactive Decision Support

    Get PDF
    These Proceedings report the scientific results of an International Workshop on "Methodology and Software for Interactive Decision Support" organized jointly by the System and Decision Sciences Program of IIASA and The National Committee for Applied Systems Analysis and Management in Bulgaria. Several other Bulgarian institutions sponsored the workshop -- The Committee for Science to the Council of Ministers, The State Committee for Research and Technology and The Bulgarian Industrial Association. The workshop was held in Albena, on the Black Sea Coast. In the first section, "Theory and Algorithms for Multiple Criteria Optimization," new theoretical developments in multiple criteria optimization are presented. In the second section, "Theory, Methodology and Software for Decision Support Systems," the principles of building decision support systems are presented as well as software tools constituting the building components of such systems. Moreover, several papers are devoted to the general methodology of building such systems or present experimental design of systems supporting certain class of decision problems. The third section addresses issues of "Applications of Decision Support Systems and Computer Implementations of Decision Support Systems." Another part of this section has a special character. Beside theoretical and methodological papers, several practical implementations of software for decision support have been presented during the workshop. These software packages varied from very experimental and illustrative implementations of some theoretical concept to well developed and documented systems being currently commercially distributed and used for solving practical problems

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks
    corecore