10,575 research outputs found

    Affine Registration of label maps in Label Space

    Get PDF
    Two key aspects of coupled multi-object shape\ud analysis and atlas generation are the choice of representation\ud and subsequent registration methods used to align the sample\ud set. For example, a typical brain image can be labeled into\ud three structures: grey matter, white matter and cerebrospinal\ud fluid. Many manipulations such as interpolation, transformation,\ud smoothing, or registration need to be performed on these images\ud before they can be used in further analysis. Current techniques\ud for such analysis tend to trade off performance between the two\ud tasks, performing well for one task but developing problems when\ud used for the other.\ud This article proposes to use a representation that is both\ud flexible and well suited for both tasks. We propose to map object\ud labels to vertices of a regular simplex, e.g. the unit interval for\ud two labels, a triangle for three labels, a tetrahedron for four\ud labels, etc. This representation, which is routinely used in fuzzy\ud classification, is ideally suited for representing and registering\ud multiple shapes. On closer examination, this representation\ud reveals several desirable properties: algebraic operations may\ud be done directly, label uncertainty is expressed as a weighted\ud mixture of labels (probabilistic interpretation), interpolation is\ud unbiased toward any label or the background, and registration\ud may be performed directly.\ud We demonstrate these properties by using label space in a gradient\ud descent based registration scheme to obtain a probabilistic\ud atlas. While straightforward, this iterative method is very slow,\ud could get stuck in local minima, and depends heavily on the initial\ud conditions. To address these issues, two fast methods are proposed\ud which serve as coarse registration schemes following which the\ud iterative descent method can be used to refine the results. Further,\ud we derive an analytical formulation for direct computation of the\ud "group mean" from the parameters of pairwise registration of all\ud the images in the sample set. We show results on richly labeled\ud 2D and 3D data sets

    Multi-view Convolutional Neural Networks for 3D Shape Recognition

    Full text link
    A longstanding question in computer vision concerns the representation of 3D shapes for recognition: should 3D shapes be represented with descriptors operating on their native 3D formats, such as voxel grid or polygon mesh, or can they be effectively represented with view-based descriptors? We address this question in the context of learning to recognize 3D shapes from a collection of their rendered views on 2D images. We first present a standard CNN architecture trained to recognize the shapes' rendered views independently of each other, and show that a 3D shape can be recognized even from a single view at an accuracy far higher than using state-of-the-art 3D shape descriptors. Recognition rates further increase when multiple views of the shapes are provided. In addition, we present a novel CNN architecture that combines information from multiple views of a 3D shape into a single and compact shape descriptor offering even better recognition performance. The same architecture can be applied to accurately recognize human hand-drawn sketches of shapes. We conclude that a collection of 2D views can be highly informative for 3D shape recognition and is amenable to emerging CNN architectures and their derivatives.Comment: v1: Initial version. v2: An updated ModelNet40 training/test split is used; results with low-rank Mahalanobis metric learning are added. v3 (ICCV 2015): A second camera setup without the upright orientation assumption is added; some accuracy and mAP numbers are changed slightly because a small issue in mesh rendering related to specularities is fixe
    • …
    corecore