469 research outputs found

    Inverse design and implementation of a wavelength demultiplexing grating coupler

    Get PDF
    Nanophotonics has emerged as a powerful tool for manipulating light on chips. Almost all of today's devices, however, have been designed using slow and ineffective brute-force search methods, leading in many cases to limited device performance. In this article, we provide a complete demonstration of our recently proposed inverse design technique, wherein the user specifies design constraints in the form of target fields rather than a dielectric constant profile, and in particular we use this method to demonstrate a new demultiplexing grating. The novel grating, which has not been developed using conventional techniques, accepts a vertical-incident Gaussian beam from a free-space and separates O-band (1300nm)(1300\mathrm{nm}) and C-band (1550nm)(1550\mathrm{nm}) light into separate waveguides. This inverse design concept is simple and extendable to a broad class of highly compact devices including frequency splitters, mode converters, and spatial mode multiplexers.Comment: 17 pages, 4 figures, 1 table. A supplementary section describing the inverse-design algorithm in detail has been added, in addition to minor corrections and updated reference

    Leveraging Continuous Material Averaging for Inverse Electromagnetic Design

    Full text link
    Inverse electromagnetic design has emerged as a way of efficiently designing active and passive electromagnetic devices. This maturing strategy involves optimizing the shape or topology of a device in order to improve a figure of merit--a process which is typically performed using some form of steepest descent algorithm. Naturally, this requires that we compute the gradient of a figure of merit which describes device performance, potentially with respect to many design variables. In this paper, we introduce a new strategy based on smoothing abrupt material interfaces which enables us to efficiently compute these gradients with high accuracy irrespective of the resolution of the underlying simulation. This has advantages over previous approaches to shape and topology optimization in nanophotonics which are either prone to gradient errors or place important constraints on the shape of the device. As a demonstration of this new strategy, we optimize a non-adiabatic waveguide taper between a narrow and wide waveguide. This optimization leads to a non-intuitive design with a very low insertion loss of only 0.041 dB at 1550 nm.Comment: 20 pages, 9 figure

    Automatic differentiation accelerated shape optimization approaches to photonic inverse design on rectilinear simulation grids

    Full text link
    Shape optimization approaches to inverse design offer low-dimensional, physically-guided parameterizations of structures by representing them as combinations of shape primitives. However, on discretized rectilinear simulation grids, computing the gradient of a user objective via the adjoint variables method requires a sum reduction of the forward/adjoint field solutions and the Jacobian of the simulation material distribution with respect to the structural shape parameters. These shape parameters often perturb large or global parts of the simulation grid resulting in many non-zero Jacobian entries, which are typically computed by finite-difference in practice. Consequently, the gradient calculation can be non-trivial. In this work we propose to accelerate the gradient calculation by invoking automatic differentiation (AutoDiff) in instantiations of structural material distributions. In doing so, we develop extensible differentiable mappings from shape parameters to shape primitives and differentiable effective logic operations (denoted AutoDiffGeo). These AutoDiffGeo definitions may introduce some additional discretization error into the field solutions because they relax notions of sub-pixel smoothing along shape boundaries. However, we show that some mappings (e.g. simple cuboids) can achieve zero error with respect to volumetric averaging strategies. We demonstrate AutoDiff enhanced shape optimization using three integrated photonic examples: a multi-etch blazed grating coupler, a non-adiabatic waveguide transition taper, and a polarization-splitting grating coupler. We find accelerations of the gradient calculation by AutoDiff relative to finite-difference often exceed 50x, resulting in total wall time accelerations of 4x or more on the same hardware with little or no compromise to final device performance. Our code is available open source at https://github.com/smhooten/emoptComment: 29 pages, 15 figure
    corecore