933 research outputs found

    Robust self-localisation and navigation based on hippocampal place cells

    Get PDF
    A computational model of the hippocampal function in spatial learning is presented. A spatial representation is incrementally acquired during exploration. Visual and self-motion information is fed into a network of rate-coded neurons. A consistent and stable place code emerges by unsupervised Hebbian learning between place- and head direction cells. Based on this representation, goal-oriented navigation is learnt by applying a reward-based learning mechanism between the hippocampus and nucleus accumbens. The model, validated on a real and simulated robot, successfully localises itself by recalibrating its path integrator using visual input. A navigation map is learnt after about 20 trials, comparable to rats in the water maze. In contrast to previous works, this system processes realistic visual input. No compass is needed for localisation and the reward-based learning mechanism extends discrete navigation models to continuous space. The model reproduces experimental findings and suggests several neurophysiological and behavioural predictions in the rat. (c) 2005 Elsevier Ltd

    Neural systems supporting navigation

    Get PDF
    Highlights: • Recent neuroimaging and electrophysiology studies have begun to shed light on the neural dynamics of navigation systems. • Computational models have advanced theories of how entorhinal grid cells and hippocampal place cells might serve navigation. • Hippocampus and entorhinal cortex provide complementary representations of routes and vectors for navigation. Much is known about how neural systems determine current spatial position and orientation in the environment. By contrast little is understood about how the brain represents future goal locations or computes the distance and direction to such goals. Recent electrophysiology, computational modelling and neuroimaging research have shed new light on how the spatial relationship to a goal may be determined and represented during navigation. This research suggests that the hippocampus may code the path to the goal while the entorhinal cortex represents the vector to the goal. It also reveals that the engagement of the hippocampus and entorhinal cortex varies across the different operational stages of navigation, such as during travel, route planning, and decision-making at waypoints

    Resting state connectivity between medial temporal lobe regions and intrinsic cortical networks predicts performance in a path integration task

    Get PDF
    Humans differ in their individual navigational performance, in part because successful navigation relies on several diverse abilities. One such navigational capability is path integration, the updating of position and orientation during movement, typically in a sparse, landmark-free environment. This study examined the relationship between path integration abilities and functional connectivity to several canonical intrinsic brain networks. Intrinsic networks within the brain reflect past inputs and communication as well as structural architecture. Individual differences in intrinsic connectivity have been observed for common networks, suggesting that these networks can inform our understanding of individual spatial abilities. Here, we examined individual differences in intrinsic connectivity using resting state magnetic resonance imaging (rsMRI). We tested path integration ability using a loop closure task, in which participants viewed a single video of movement in a circle trajectory in a sparse environment, and then indicated whether the video ended in the same location in which it started. To examine intrinsic brain networks, participants underwent a resting state scan. We found that better performance in the loop task was associated with increased connectivity during rest between the central executive network (CEN) and posterior hippocampus, parahippocampal cortex (PHC) and entorhinal cortex. We also found that connectivity between PHC and the default mode network (DMN) during rest was associated with better loop closure performance. The results indicate that interactions between medial temporal lobe (MTL) regions and intrinsic networks that involve prefrontal cortex (PFC) are important for path integration and navigation.This work was supported by the Office of Naval Research (ONR MURI N00014-10-1-0936 and MURI N00014-16-1-2832). fMRI scanning was completed at the Athinoula A. Martinos Center for Biomedical Imaging (Charlestown, MA, USA), which receives support from the National Center for Research Resources (NCRR P41RR14075). (ONR MURI N00014-10-1-0936 - Office of Naval Research; MURI N00014-16-1-2832 - Office of Naval Research; NCRR P41RR14075 - National Center for Research Resources)Published versio

    Featureless visual processing for SLAM in changing outdoor environments

    Get PDF
    Vision-based SLAM is mostly a solved problem providing clear, sharp images can be obtained. However, in outdoor environments a number of factors such as rough terrain, high speeds and hardware limitations can result in these conditions not being met. High speed transit on rough terrain can lead to image blur and under/over exposure, problems that cannot easily be dealt with using low cost hardware. Furthermore, recently there has been a growth in interest in lifelong autonomy for robots, which brings with it the challenge in outdoor environments of dealing with a moving sun and lack of constant artificial lighting. In this paper, we present a lightweight approach to visual localization and visual odometry that addresses the challenges posed by perceptual change and low cost cameras. The approach combines low resolution imagery with the SLAM algorithm, RatSLAM. We test the system using a cheap consumer camera mounted on a small vehicle in a mixed urban and vegetated environment, at times ranging from dawn to dusk and in conditions ranging from sunny weather to rain. We first show that the system is able to provide reliable mapping and recall over the course of the day and incrementally incorporate new visual scenes from different times into an existing map. We then restrict the system to only learning visual scenes at one time of day, and show that the system is still able to localize and map at other times of day. The results demonstrate the viability of the approach in situations where image quality is poor and environmental or hardware factors preclude the use of visual features

    Learning cognitive maps: Finding useful structure in an uncertain world

    Get PDF
    In this chapter we will describe the central mechanisms that influence how people learn about large-scale space. We will focus particularly on how these mechanisms enable people to effectively cope with both the uncertainty inherent in a constantly changing world and also with the high information content of natural environments. The major lessons are that humans get by with a less is more approach to building structure, and that they are able to quickly adapt to environmental changes thanks to a range of general purpose mechanisms. By looking at abstract principles, instead of concrete implementation details, it is shown that the study of human learning can provide valuable lessons for robotics. Finally, these issues are discussed in the context of an implementation on a mobile robot. © 2007 Springer-Verlag Berlin Heidelberg

    Simultaneous localisation and mapping on a multi-degree of freedom biomimetic whiskered robot

    Get PDF
    A biomimetic mobile robot called “Shrewbot” has been built as part of a neuroethological study of the mammalian facial whisker sensory system. This platform has been used to further evaluate the problem space of whisker based tactile Simultaneous Localisation And Mapping (tSLAM). Shrewbot uses a biomorphic 3-dimensional array of active whiskers and a model of action selection based on tactile sensory attention to explore a circular walled arena sparsely populated with simple geometric shapes. Datasets taken during this exploration have been used to parameterise an approach to localisation and mapping based on probabilistic occupancy grids. We present the results of this work and conclude that simultaneous localisation and mapping is possible given only noisy odometry and tactile information from a 3-dimensional array of active biomimetic whiskers and no prior information of features in the environment

    Neural correlates of navigation in large-scale space

    Get PDF
    Navigation and self-localisation are fundamental to spatial cognition. The cognitive map supporting these abilities is implemented in the hippocampal formation. Place cells in the hippocampus fire when the animal is at a specific location – a place field. They are thought to be involved in navigation and self-localisation but usually studied in constrained environments, limiting observable states. In this thesis, I present two experiments studying place cells in large open field environments, a novel auditory cue-triggered navigational task, and a technical solution for conducting large scale automated experiments. Place cells are frequently reactivated during immobility, rapidly replaying trajectories through environments. These replay events are thought to be involved in navigational planning. Using a novel automated cue-triggered navigational task in a large open field environment, I show that replay is not associated with navigation to the goal. Instead, it occurs reliably at the end of successful trials, when an associated reward is received, but not during consumption of scattered pellets. The trajectories in these events are predictive of the animal’s movement after, but not before, the reward. The number of place fields per cell, their size and other properties have not been fully characterised. Using multiple large open field environments of different size, I show that place field size, shape and density changes systematically with distance from walls. However, through a homeostatic mechanism, the mean firing rate and proportion of co-active units in the population remains constant throughout environments, as does the accuracy of their spatial representation. Multiple place field properties are conserved by cells across environments, including the number of fields, which is quantified relative to environment size using a gamma-Poisson model. Place cell population models suggest two sub-populations, with uniform and boundary dependent field distributions. These results provide a comprehensive account of place cell population statistics in different size environments
    • …
    corecore