336 research outputs found

    Offline signature verification using classifier combination of HOG and LBP features

    Get PDF
    We present an offline signature verification system based on a signature’s local histogram features. The signature is divided into zones using both the Cartesian and polar coordinate systems and two different histogram features are calculated for each zone: histogram of oriented gradients (HOG) and histogram of local binary patterns (LBP). The classification is performed using Support Vector Machines (SVMs), where two different approaches for training are investigated, namely global and user-dependent SVMs. User-dependent SVMs, trained separately for each user, learn to differentiate a user’s signature from others, whereas a single global SVM trained with difference vectors of query and reference signatures’ features of all users, learns how to weight dissimilarities. The global SVM classifier is trained using genuine and forgery signatures of subjects that are excluded from the test set, while userdependent SVMs are separately trained for each subject using genuine and random forgeries. The fusion of all classifiers (global and user-dependent classifiers trained with each feature type), achieves a 15.41% equal error rate in skilled forgery test, in the GPDS-160 signature database without using any skilled forgeries in training

    MobiBits: Multimodal Mobile Biometric Database

    Full text link
    This paper presents a novel database comprising representations of five different biometric characteristics, collected in a mobile, unconstrained or semi-constrained setting with three different mobile devices, including characteristics previously unavailable in existing datasets, namely hand images, thermal hand images, and thermal face images, all acquired with a mobile, off-the-shelf device. In addition to this collection of data we perform an extensive set of experiments providing insight on benchmark recognition performance that can be achieved with these data, carried out with existing commercial and academic biometric solutions. This is the first known to us mobile biometric database introducing samples of biometric traits such as thermal hand images and thermal face images. We hope that this contribution will make a valuable addition to the already existing databases and enable new experiments and studies in the field of mobile authentication. The MobiBits database is made publicly available to the research community at no cost for non-commercial purposes.Comment: Submitted for the BIOSIG2018 conference on June 18, 2018. Accepted for publication on July 20, 201

    Gait recognition based on shape and motion analysis of silhouette contours

    Get PDF
    This paper presents a three-phase gait recognition method that analyses the spatio-temporal shape and dynamic motion (STS-DM) characteristics of a human subject’s silhouettes to identify the subject in the presence of most of the challenging factors that affect existing gait recognition systems. In phase 1, phase-weighted magnitude spectra of the Fourier descriptor of the silhouette contours at ten phases of a gait period are used to analyse the spatio-temporal changes of the subject’s shape. A component-based Fourier descriptor based on anatomical studies of human body is used to achieve robustness against shape variations caused by all common types of small carrying conditions with folded hands, at the subject’s back and in upright position. In phase 2, a full-body shape and motion analysis is performed by fitting ellipses to contour segments of ten phases of a gait period and using a histogram matching with Bhattacharyya distance of parameters of the ellipses as dissimilarity scores. In phase 3, dynamic time warping is used to analyse the angular rotation pattern of the subject’s leading knee with a consideration of arm-swing over a gait period to achieve identification that is invariant to walking speed, limited clothing variations, hair style changes and shadows under feet. The match scores generated in the three phases are fused using weight-based score-level fusion for robust identification in the presence of missing and distorted frames, and occlusion in the scene. Experimental analyses on various publicly available data sets show that STS-DM outperforms several state-of-the-art gait recognition methods

    Preprocessing and feature selection for improved sensor interoperability in online biometric signature verification

    Full text link
    Under a IEEE Open Access Publishing Agreement.Due to the technological evolution and the increasing popularity of smartphones, people can access an application using authentication based on biometric approaches from many different devices. Device interoperability is a very challenging problem for biometrics, which needs to be further studied. In this paper, we focus on interoperability device compensation for online signature verification since this biometric trait is gaining a significant interest in banking and commercial sector in the last years. The proposed approach is based on two main stages. The first one is a preprocessing stage where data acquired from different devices are processed in order to normalize the signals in similar ranges. The second one is based on feature selection taking into account the device interoperability case, in order to select to select features which are robust in these conditions. This proposed approach has been successfully applied in a similar way to two common system approaches in online signature verification, i.e., a global features-based system and a time functions-based system. Experiments are carried out using Biosecure DS2 (Wacom device) and DS3 (Personal Digital Assistant mobile device) dynamic signature data sets which take into account multisession and two different scenarios emulating real operation conditions. The performance of the proposed global features-based and time functions-based systems applying the two main stages considered in this paper have provided an average relative improvement of performance of 60.3% and 26.5% Equal Error Rate (EER), respectively, for random forgeries cases, compared with baseline systems. Finally, a fusion of the proposed systems has achieved a further significant improvement for the device interoperability problem, especially for skilled forgeries. In this case, the proposed fusion system has achieved an average relative improvement of 27.7% EER compared with the best performance of time functions-based system. These results prove the robustness of the proposed approach and open the door for future works using devices as smartphones or tablets, commonly used nowadays.This work was supported in part by the Project Bio-Shield under Grant TEC2012-34881, in part by Cecabank e-BioFirma Contract, and in part by Catedra UAM-Telefonic

    SynSig2Vec: Learning Representations from Synthetic Dynamic Signatures for Real-world Verification

    Full text link
    An open research problem in automatic signature verification is the skilled forgery attacks. However, the skilled forgeries are very difficult to acquire for representation learning. To tackle this issue, this paper proposes to learn dynamic signature representations through ranking synthesized signatures. First, a neuromotor inspired signature synthesis method is proposed to synthesize signatures with different distortion levels for any template signature. Then, given the templates, we construct a lightweight one-dimensional convolutional network to learn to rank the synthesized samples, and directly optimize the average precision of the ranking to exploit relative and fine-grained signature similarities. Finally, after training, fixed-length representations can be extracted from dynamic signatures of variable lengths for verification. One highlight of our method is that it requires neither skilled nor random forgeries for training, yet it surpasses the state-of-the-art by a large margin on two public benchmarks.Comment: To appear in AAAI 202

    Silhouette-based gait recognition using Procrustes shape analysis and elliptic Fourier descriptors

    Get PDF
    This paper presents a gait recognition method which combines spatio-temporal motion characteristics, statistical and physical parameters (referred to as STM-SPP) of a human subject for its classification by analysing shape of the subject's silhouette contours using Procrustes shape analysis (PSA) and elliptic Fourier descriptors (EFDs). STM-SPP uses spatio-temporal gait characteristics and physical parameters of human body to resolve similar dissimilarity scores between probe and gallery sequences obtained by PSA. A part-based shape analysis using EFDs is also introduced to achieve robustness against carrying conditions. The classification results by PSA and EFDs are combined, resolving tie in ranking using contour matching based on Hu moments. Experimental results show STM-SPP outperforms several silhouette-based gait recognition methods
    corecore