53,409 research outputs found

    ORGB: Offset Correction in RGB Color Space for Illumination-Robust Image Processing

    Full text link
    Single materials have colors which form straight lines in RGB space. However, in severe shadow cases, those lines do not intersect the origin, which is inconsistent with the description of most literature. This paper is concerned with the detection and correction of the offset between the intersection and origin. First, we analyze the reason for forming that offset via an optical imaging model. Second, we present a simple and effective way to detect and remove the offset. The resulting images, named ORGB, have almost the same appearance as the original RGB images while are more illumination-robust for color space conversion. Besides, image processing using ORGB instead of RGB is free from the interference of shadows. Finally, the proposed offset correction method is applied to road detection task, improving the performance both in quantitative and qualitative evaluations.Comment: Project website: https://baidut.github.io/ORGB

    Robust Multiple Lane Road Modeling Based on Perspective Analysis

    Get PDF
    Road modeling is the first step towards environment perception within driver assistance video-based systems. Typically, lane modeling allows applications such as lane departure warning or lane invasion by other vehicles. In this paper, a new monocular image processing strategy that achieves a robust multiple lane model is proposed. The identification of multiple lanes is done by firstly detecting the own lane and estimating its geometry under perspective distortion. The perspective analysis and curve fitting allows to hypothesize adjacent lanes assuming some a priori knowledge about the road. The verification of these hypotheses is carried out by a confidence level analysis. Several types of sequences have been tested, with different illumination conditions, presence of shadows and significant curvature, all performing in realtime. Results show the robustness of the system, delivering accurate multiple lane road models in most situations

    Homography-based ground plane detection using a single on-board camera

    Get PDF
    This study presents a robust method for ground plane detection in vision-based systems with a non-stationary camera. The proposed method is based on the reliable estimation of the homography between ground planes in successive images. This homography is computed using a feature matching approach, which in contrast to classical approaches to on-board motion estimation does not require explicit ego-motion calculation. As opposed to it, a novel homography calculation method based on a linear estimation framework is presented. This framework provides predictions of the ground plane transformation matrix that are dynamically updated with new measurements. The method is specially suited for challenging environments, in particular traffic scenarios, in which the information is scarce and the homography computed from the images is usually inaccurate or erroneous. The proposed estimation framework is able to remove erroneous measurements and to correct those that are inaccurate, hence producing a reliable homography estimate at each instant. It is based on the evaluation of the difference between the predicted and the observed transformations, measured according to the spectral norm of the associated matrix of differences. Moreover, an example is provided on how to use the information extracted from ground plane estimation to achieve object detection and tracking. The method has been successfully demonstrated for the detection of moving vehicles in traffic environments
    corecore