3,310 research outputs found

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Milestones in Autonomous Driving and Intelligent Vehicles Part II: Perception and Planning

    Full text link
    Growing interest in autonomous driving (AD) and intelligent vehicles (IVs) is fueled by their promise for enhanced safety, efficiency, and economic benefits. While previous surveys have captured progress in this field, a comprehensive and forward-looking summary is needed. Our work fills this gap through three distinct articles. The first part, a "Survey of Surveys" (SoS), outlines the history, surveys, ethics, and future directions of AD and IV technologies. The second part, "Milestones in Autonomous Driving and Intelligent Vehicles Part I: Control, Computing System Design, Communication, HD Map, Testing, and Human Behaviors" delves into the development of control, computing system, communication, HD map, testing, and human behaviors in IVs. This part, the third part, reviews perception and planning in the context of IVs. Aiming to provide a comprehensive overview of the latest advancements in AD and IVs, this work caters to both newcomers and seasoned researchers. By integrating the SoS and Part I, we offer unique insights and strive to serve as a bridge between past achievements and future possibilities in this dynamic field.Comment: 17pages, 6figures. IEEE Transactions on Systems, Man, and Cybernetics: System

    Effects of Ground Manifold Modeling on the Accuracy of Stixel Calculations

    Get PDF
    This paper highlights the role of ground manifold modeling for stixel calculations; stixels are medium-level data representations used for the development of computer vision modules for self-driving cars. By using single-disparity maps and simplifying ground manifold models, calculated stixels may suffer from noise, inconsistency, and false-detection rates for obstacles, especially in challenging datasets. Stixel calculations can be improved with respect to accuracy and robustness by using more adaptive ground manifold approximations. A comparative study of stixel results, obtained for different ground-manifold models (e.g., plane-fitting, line-fitting in v-disparities or polynomial approximation, and graph cut), defines the main part of this paper. This paper also considers the use of trinocular stereo vision and shows that this provides options to enhance stixel results, compared with the binocular recording. Comprehensive experiments are performed on two publicly available challenging datasets. We also use a novel way for comparing calculated stixels with ground truth. We compare depth information, as given by extracted stixels, with ground-truth depth, provided by depth measurements using a highly accurate LiDAR range sensor (as available in one of the public datasets). We evaluate the accuracy of four different ground-manifold methods. The experimental results also include quantitative evaluations of the tradeoff between accuracy and run time. As a result, the proposed trinocular recording together with graph-cut estimation of ground manifolds appears to be a recommended way, also considering challenging weather and lighting conditions

    A Flexible Modeling Approach for Robust Multi-Lane Road Estimation

    Full text link
    A robust estimation of road course and traffic lanes is an essential part of environment perception for next generations of Advanced Driver Assistance Systems and development of self-driving vehicles. In this paper, a flexible method for modeling multiple lanes in a vehicle in real time is presented. Information about traffic lanes, derived by cameras and other environmental sensors, that is represented as features, serves as input for an iterative expectation-maximization method to estimate a lane model. The generic and modular concept of the approach allows to freely choose the mathematical functions for the geometrical description of lanes. In addition to the current measurement data, the previously estimated result as well as additional constraints to reflect parallelism and continuity of traffic lanes, are considered in the optimization process. As evaluation of the lane estimation method, its performance is showcased using cubic splines for the geometric representation of lanes in simulated scenarios and measurements recorded using a development vehicle. In a comparison to ground truth data, robustness and precision of the lanes estimated up to a distance of 120 m are demonstrated. As a part of the environmental modeling, the presented method can be utilized for longitudinal and lateral control of autonomous vehicles

    A Hybrid Vision-Map Method for Urban Road Detection

    Get PDF

    SceneFlowFields: Dense Interpolation of Sparse Scene Flow Correspondences

    Full text link
    While most scene flow methods use either variational optimization or a strong rigid motion assumption, we show for the first time that scene flow can also be estimated by dense interpolation of sparse matches. To this end, we find sparse matches across two stereo image pairs that are detected without any prior regularization and perform dense interpolation preserving geometric and motion boundaries by using edge information. A few iterations of variational energy minimization are performed to refine our results, which are thoroughly evaluated on the KITTI benchmark and additionally compared to state-of-the-art on MPI Sintel. For application in an automotive context, we further show that an optional ego-motion model helps to boost performance and blends smoothly into our approach to produce a segmentation of the scene into static and dynamic parts.Comment: IEEE Winter Conference on Applications of Computer Vision (WACV), 201
    • …
    corecore